KnightKing

Ke Yang, Mingxing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, Yong Jiang
{"title":"KnightKing","authors":"Ke Yang, Mingxing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, Yong Jiang","doi":"10.1145/3341301.3359634","DOIUrl":null,"url":null,"abstract":"Random walk on graphs has recently gained immense popularity as a tool for graph data analytics and machine learning. Currently, random walk algorithms are developed as individual implementations and suffer significant performance and scalability problems, especially with the dynamic nature of sophisticated walk strategies. We present KnightKing, the first general-purpose, distributed graph random walk engine. To address the unique interaction between a static graph and many dynamic walkers, it adopts an intuitive walker-centric computation model. The corresponding programming model allows users to easily specify existing or new random walk algorithms, facilitated by a new unified edge transition probability definition that applies across popular known algorithms. With KnightKing, these diverse algorithms benefit from its common distributed random walk execution engine, centered around an innovative rejection-based sampling mechanism that dramatically reduces the cost of higher-order random walk algorithms. Our evaluation confirms that KnightKing brings up to 4 orders of magnitude improvement in executing algorithms that currently can only be afforded with approximation solutions on large graphs.","PeriodicalId":331561,"journal":{"name":"Proceedings of the 27th ACM Symposium on Operating Systems Principles","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341301.3359634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

Random walk on graphs has recently gained immense popularity as a tool for graph data analytics and machine learning. Currently, random walk algorithms are developed as individual implementations and suffer significant performance and scalability problems, especially with the dynamic nature of sophisticated walk strategies. We present KnightKing, the first general-purpose, distributed graph random walk engine. To address the unique interaction between a static graph and many dynamic walkers, it adopts an intuitive walker-centric computation model. The corresponding programming model allows users to easily specify existing or new random walk algorithms, facilitated by a new unified edge transition probability definition that applies across popular known algorithms. With KnightKing, these diverse algorithms benefit from its common distributed random walk execution engine, centered around an innovative rejection-based sampling mechanism that dramatically reduces the cost of higher-order random walk algorithms. Our evaluation confirms that KnightKing brings up to 4 orders of magnitude improvement in executing algorithms that currently can only be afforded with approximation solutions on large graphs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TASO Gerenuk The inflection point hypothesis: a principled debugging approach for locating the root cause of a failure Yodel I4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1