{"title":"A robust fault tolerant control strategy for aircraft systems","authors":"A. Fekih","doi":"10.1109/CCA.2009.5281005","DOIUrl":null,"url":null,"abstract":"An integrated design that combines sliding mode control with adaptive control to provide a robust fault tolerant flight controller that works for a wide range of faults is proposed in this paper. The scheme combines the insensitivity and robustness properties of sliding mode control to certain types of disturbances and uncertainties with the accommodation properties of adaptive control to parametric and structural uncertainties caused by component faults and external disturbances. It is shown that parameter variations and actuator faults can be handled directly and system stability and performance is preserved under faulty conditions. The results obtained from implementing the controller to an F-16 aircraft system show good performance under both un-faulty and faulty scenarios.","PeriodicalId":294950,"journal":{"name":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2009.5281005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
An integrated design that combines sliding mode control with adaptive control to provide a robust fault tolerant flight controller that works for a wide range of faults is proposed in this paper. The scheme combines the insensitivity and robustness properties of sliding mode control to certain types of disturbances and uncertainties with the accommodation properties of adaptive control to parametric and structural uncertainties caused by component faults and external disturbances. It is shown that parameter variations and actuator faults can be handled directly and system stability and performance is preserved under faulty conditions. The results obtained from implementing the controller to an F-16 aircraft system show good performance under both un-faulty and faulty scenarios.