Ralph Rudi Schmidt, J. Hildebrand, I. Kraljevski, Frank Duckhorn, Constanze Tschöpe
{"title":"A Study for Laser Additive Manufacturing Quality and Material Classification Using Machine Learning","authors":"Ralph Rudi Schmidt, J. Hildebrand, I. Kraljevski, Frank Duckhorn, Constanze Tschöpe","doi":"10.1109/SENSORS52175.2022.9967311","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the use of acoustic emissions (AEs) to monitor the quality, and material used, for the laser additive manufacturing (LAM) process with steel and copper wire. Layers of deposited material (steel or copper) were created using LAM. The quality of these layers was either good or unstable. The AEs were recorded using three sensors, one microphone, and two structure-borne sound probes. The recorded signals were processed and transformed using the fast Fourier method. Then models were trained with the processed data and evaluated using a fivefold cross-validation. Results show that it is possible to accurately classify the materials used during LAM (up to a balanced accuracy [BAcc] score of 0.99). Also, the process quality could be classified with a BAcc score of up to 0.81. Overall, the results are promising, but further research and data collection are necessary for a proper validation of our results.","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper demonstrates the use of acoustic emissions (AEs) to monitor the quality, and material used, for the laser additive manufacturing (LAM) process with steel and copper wire. Layers of deposited material (steel or copper) were created using LAM. The quality of these layers was either good or unstable. The AEs were recorded using three sensors, one microphone, and two structure-borne sound probes. The recorded signals were processed and transformed using the fast Fourier method. Then models were trained with the processed data and evaluated using a fivefold cross-validation. Results show that it is possible to accurately classify the materials used during LAM (up to a balanced accuracy [BAcc] score of 0.99). Also, the process quality could be classified with a BAcc score of up to 0.81. Overall, the results are promising, but further research and data collection are necessary for a proper validation of our results.