A Study for Laser Additive Manufacturing Quality and Material Classification Using Machine Learning

Ralph Rudi Schmidt, J. Hildebrand, I. Kraljevski, Frank Duckhorn, Constanze Tschöpe
{"title":"A Study for Laser Additive Manufacturing Quality and Material Classification Using Machine Learning","authors":"Ralph Rudi Schmidt, J. Hildebrand, I. Kraljevski, Frank Duckhorn, Constanze Tschöpe","doi":"10.1109/SENSORS52175.2022.9967311","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the use of acoustic emissions (AEs) to monitor the quality, and material used, for the laser additive manufacturing (LAM) process with steel and copper wire. Layers of deposited material (steel or copper) were created using LAM. The quality of these layers was either good or unstable. The AEs were recorded using three sensors, one microphone, and two structure-borne sound probes. The recorded signals were processed and transformed using the fast Fourier method. Then models were trained with the processed data and evaluated using a fivefold cross-validation. Results show that it is possible to accurately classify the materials used during LAM (up to a balanced accuracy [BAcc] score of 0.99). Also, the process quality could be classified with a BAcc score of up to 0.81. Overall, the results are promising, but further research and data collection are necessary for a proper validation of our results.","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper demonstrates the use of acoustic emissions (AEs) to monitor the quality, and material used, for the laser additive manufacturing (LAM) process with steel and copper wire. Layers of deposited material (steel or copper) were created using LAM. The quality of these layers was either good or unstable. The AEs were recorded using three sensors, one microphone, and two structure-borne sound probes. The recorded signals were processed and transformed using the fast Fourier method. Then models were trained with the processed data and evaluated using a fivefold cross-validation. Results show that it is possible to accurately classify the materials used during LAM (up to a balanced accuracy [BAcc] score of 0.99). Also, the process quality could be classified with a BAcc score of up to 0.81. Overall, the results are promising, but further research and data collection are necessary for a proper validation of our results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的激光增材制造质量和材料分类研究
本文演示了使用声发射(ae)来监测钢和铜线激光增材制造(LAM)过程的质量和使用的材料。层沉积材料(钢或铜)是使用LAM创建的。这些层的质量要么很好,要么不稳定。使用三个传感器,一个麦克风和两个结构声探头记录ae。用快速傅立叶方法对记录的信号进行处理和变换。然后用处理后的数据训练模型,并使用五倍交叉验证进行评估。结果表明,可以准确地对LAM期间使用的材料进行分类(高达0.99的平衡精度[BAcc]分数)。同时,该工艺质量的BAcc评分可达0.81。总的来说,结果是有希望的,但进一步的研究和数据收集是必要的,以适当地验证我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-intrusive Water Flow Rate Measurement: A TEG-powered Ultrasonic Sensing Approach Design of optical inclinometer composed of a ball lens and viscosity fluid to improve focusing Fall Event Detection using Vision Transformer Porous Silicon-Based Microspectral Unit for Real-Time Moisture Detection in a Battery-less Smart Mask Twisted and Coiled Carbon Nanotube Yarn Muscle Embedding Ferritin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1