ML estimation of the resampling factor

David Vázquez-Padín, Pedro Comesaña Alfaro
{"title":"ML estimation of the resampling factor","authors":"David Vázquez-Padín, Pedro Comesaña Alfaro","doi":"10.1109/WIFS.2012.6412650","DOIUrl":null,"url":null,"abstract":"In this work, the problem of resampling factor estimation for tampering detection is addressed following the maximum likelihood criterion. By relying on the rounding operation applied after resampling, an approximation of the likelihood function of the quantized resampled signal is obtained. From the underlying statistical model, the maximum likelihood estimate is derived for one-dimensional signals and a piecewise linear interpolation. The performance of the obtained estimator is evaluated, showing that it outperforms state-of-the-art methods.","PeriodicalId":396789,"journal":{"name":"2012 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2012.6412650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this work, the problem of resampling factor estimation for tampering detection is addressed following the maximum likelihood criterion. By relying on the rounding operation applied after resampling, an approximation of the likelihood function of the quantized resampled signal is obtained. From the underlying statistical model, the maximum likelihood estimate is derived for one-dimensional signals and a piecewise linear interpolation. The performance of the obtained estimator is evaluated, showing that it outperforms state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重采样因子的ML估计
本文根据最大似然准则解决了篡改检测中重采样因子估计的问题。依靠重采样后施加的舍入运算,获得了量化重采样信号的似然函数的近似值。从基础统计模型,最大似然估计是一维信号和分段线性插值。评估了所获得的估计器的性能,表明它优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing steganographic distortion using directional filters AC-3 bit stream watermarking Privacy-preserving architecture for forensic image recognition Active content fingerprinting: A marriage of digital watermarking and content fingerprinting Optimum forensic and counter-forensic strategies for source identification with training data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1