M. Tabata, I. Adachi, T. Fukushima, H. Kawai, H. Kishimoto, A. Kuratani, H. Nakayama, S. Nishida, T. Noguchi, K. Okudaira, Y. Tajima, H. Yano, H. Yokogawa, H. Yoshida
{"title":"Development of silica aerogel with any density","authors":"M. Tabata, I. Adachi, T. Fukushima, H. Kawai, H. Kishimoto, A. Kuratani, H. Nakayama, S. Nishida, T. Noguchi, K. Okudaira, Y. Tajima, H. Yano, H. Yokogawa, H. Yoshida","doi":"10.1109/NSSMIC.2005.1596380","DOIUrl":null,"url":null,"abstract":"New production methods of silica aerogel with high and low refractive indices have been developed. A very slow shrinkage of alcogel at room temperature has made possible producing aerogel with high refractive indices of up to 1.265 without cracks. Even higher refractive indices than 1.08, the transmission length of the aerogel obtained from this technique has been measured to be about 10 to 20 mm at 400 nm wave length. A mold made of alcogel which endures shrinkage in the supercritical drying process has provided aerogel with the extremely low density of 0.009 g/cm3, which corresponds to the refractive index of 1.002. We have succeeded producing aerogel with a wide range of densities","PeriodicalId":105619,"journal":{"name":"IEEE Nuclear Science Symposium Conference Record, 2005","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium Conference Record, 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2005.1596380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
New production methods of silica aerogel with high and low refractive indices have been developed. A very slow shrinkage of alcogel at room temperature has made possible producing aerogel with high refractive indices of up to 1.265 without cracks. Even higher refractive indices than 1.08, the transmission length of the aerogel obtained from this technique has been measured to be about 10 to 20 mm at 400 nm wave length. A mold made of alcogel which endures shrinkage in the supercritical drying process has provided aerogel with the extremely low density of 0.009 g/cm3, which corresponds to the refractive index of 1.002. We have succeeded producing aerogel with a wide range of densities