Localized Fault Recovery for Nested Fork-Join Programs

Gokcen Kestor, S. Krishnamoorthy, Wenjing Ma
{"title":"Localized Fault Recovery for Nested Fork-Join Programs","authors":"Gokcen Kestor, S. Krishnamoorthy, Wenjing Ma","doi":"10.1109/IPDPS.2017.75","DOIUrl":null,"url":null,"abstract":"Nested fork-join programs scheduled using work stealing can automatically balance load and adapt to changes in the execution environment. In this paper, we design an approach to efficiently recover from faults encountered by these programs. Specifically, we focus on localized recovery of the task space in the presence of fail-stop failures. We present an approach to efficiently track, under work stealing, the relationships between the work executed by various threads. This information is used to identify and schedule the tasks to be re-executed without interfering with normal task execution. The algorithm precisely computes the work lost, incurs minimal re-execution overhead, and can recover from an arbitrary number of failures. Experimental evaluation demonstrates low overheads in the absence of failures, recovery overheads on the same order as the lost work, and much lower recovery costs than alternative strategies.","PeriodicalId":209524,"journal":{"name":"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2017.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Nested fork-join programs scheduled using work stealing can automatically balance load and adapt to changes in the execution environment. In this paper, we design an approach to efficiently recover from faults encountered by these programs. Specifically, we focus on localized recovery of the task space in the presence of fail-stop failures. We present an approach to efficiently track, under work stealing, the relationships between the work executed by various threads. This information is used to identify and schedule the tasks to be re-executed without interfering with normal task execution. The algorithm precisely computes the work lost, incurs minimal re-execution overhead, and can recover from an arbitrary number of failures. Experimental evaluation demonstrates low overheads in the absence of failures, recovery overheads on the same order as the lost work, and much lower recovery costs than alternative strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌套Fork-Join程序的局部故障恢复
使用工作窃取调度的嵌套fork-join程序可以自动平衡负载并适应执行环境的变化。在本文中,我们设计了一种有效地从这些程序遇到的故障中恢复的方法。具体来说,我们关注的是在存在故障停止故障的情况下任务空间的局部恢复。我们提出了一种方法,在工作窃取的情况下,有效地跟踪由不同线程执行的工作之间的关系。此信息用于识别和调度要重新执行的任务,而不会干扰正常的任务执行。该算法精确地计算丢失的工作,产生最小的重新执行开销,并且可以从任意数量的故障中恢复。实验评估表明,在没有故障的情况下,恢复开销低,恢复开销与丢失的工作相同,并且比其他策略的恢复成本低得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL Toucan — A Translator for Communication Tolerant MPI Applications Production Hardware Overprovisioning: Real-World Performance Optimization Using an Extensible Power-Aware Resource Management Framework Approximation Proofs of a Fast and Efficient List Scheduling Algorithm for Task-Based Runtime Systems on Multicores and GPUs Dynamic Memory-Aware Task-Tree Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1