A Privacy-Preserving Sensor Aggregation Model Based Deep Learning in Large Scale Internet of Things Applications

Agus Kurniawan, M. Kyas
{"title":"A Privacy-Preserving Sensor Aggregation Model Based Deep Learning in Large Scale Internet of Things Applications","authors":"Agus Kurniawan, M. Kyas","doi":"10.1109/SAMI.2019.8782758","DOIUrl":null,"url":null,"abstract":"Privacy-preservation in data aggregation in large scale Internet of Things applications is challenging. Sensitive data from a result of collecting sensor data needs attentions to address privacy issues. We present a privacy-preserving model to protect data aggregation between sensor gateway and storage servers. Our proposed scheme is designed for decentralized networks and passwordless by obfuscating sensor data. We design, implement and evaluate a practical privacy-preserving system using deep learning autoencoder with convolutional neural network architecture. We do a statistical analysis and perform simulation on computer and IoT board machines. Evaluation process involves training and testing phases with a dataset. We measure system accuracy and computation time. The simulation and experimental results show that privacy-preserving-based deep learning model can address privacy issues on data aggregation and guarantee scalability and performance on applications.","PeriodicalId":240256,"journal":{"name":"2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2019.8782758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Privacy-preservation in data aggregation in large scale Internet of Things applications is challenging. Sensitive data from a result of collecting sensor data needs attentions to address privacy issues. We present a privacy-preserving model to protect data aggregation between sensor gateway and storage servers. Our proposed scheme is designed for decentralized networks and passwordless by obfuscating sensor data. We design, implement and evaluate a practical privacy-preserving system using deep learning autoencoder with convolutional neural network architecture. We do a statistical analysis and perform simulation on computer and IoT board machines. Evaluation process involves training and testing phases with a dataset. We measure system accuracy and computation time. The simulation and experimental results show that privacy-preserving-based deep learning model can address privacy issues on data aggregation and guarantee scalability and performance on applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模物联网应用中基于深度学习的隐私保护传感器聚合模型
在大规模物联网应用中,数据聚合中的隐私保护具有挑战性。收集传感器数据产生的敏感数据需要注意解决隐私问题。提出了一种保护传感器网关和存储服务器之间数据聚合的隐私保护模型。我们提出的方案是为分散的网络设计的,并且通过混淆传感器数据来实现无密码。我们使用卷积神经网络架构的深度学习自编码器设计、实现和评估了一个实用的隐私保护系统。我们对计算机和物联网板机进行了统计分析和模拟。评估过程包括数据集的训练和测试阶段。我们测量了系统精度和计算时间。仿真和实验结果表明,基于隐私保护的深度学习模型既能解决数据聚合的隐私问题,又能保证应用的可扩展性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Navigation Based on Fuzzy Cognitive Maps for Needs of Ubiquitous Robotics WiFi vulnerability caused by SSID forgery in the IEEE 802.11 protocol Optimizing the use of renewable energy sources in the energy mix of Hungary Laboratory in Cloud for Model Systems of System Based Engineering Structures FEM analysis of natural frequencies of jet engine iSTC-21v turbine blade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1