Feature Image-Based Automatic Modulation Classification Method Using CNN Algorithm

Jung Ho Lee, Kwang-Yul Kim, Y. Shin
{"title":"Feature Image-Based Automatic Modulation Classification Method Using CNN Algorithm","authors":"Jung Ho Lee, Kwang-Yul Kim, Y. Shin","doi":"10.1109/ICAIIC.2019.8669002","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a feature image-based automatic modulation classification (AMC) method to classify modulation type. The proposed method uses a convolutional neural network (CNN) which is one of deep learning algorithms for image classification. In order to classify the modulation type, various features are transformed in a two-dimensional image and this image is used as the input of the CNN. From the simulation results, we show that the proposed method improves classification performance.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

In this paper, we propose a feature image-based automatic modulation classification (AMC) method to classify modulation type. The proposed method uses a convolutional neural network (CNN) which is one of deep learning algorithms for image classification. In order to classify the modulation type, various features are transformed in a two-dimensional image and this image is used as the input of the CNN. From the simulation results, we show that the proposed method improves classification performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CNN算法的特征图像自动调制分类方法
本文提出了一种基于特征图像的调制类型自动分类方法。该方法使用卷积神经网络(CNN)作为图像分类的深度学习算法之一。为了对调制类型进行分类,在二维图像中变换各种特征,并将该图像作为CNN的输入。仿真结果表明,该方法提高了分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Prices Prediction using the Title of Newspaper Articles with Korean Natural Language Processing Deep learning based decomposition of brain networks Simulation on Delay of Several Random Access Schemes A Machine-Learning-Based Channel Assignment Algorithm for IoT The Properties of mode prediction using mean root error for regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1