Linear Compositional Delay Model for the Timing Analysis of Sub-Powered Combinational Circuits

Jiaoyan Chen, C. Spagnol, S. Grandhi, E. Popovici, S. Cotofana, A. Amaricai
{"title":"Linear Compositional Delay Model for the Timing Analysis of Sub-Powered Combinational Circuits","authors":"Jiaoyan Chen, C. Spagnol, S. Grandhi, E. Popovici, S. Cotofana, A. Amaricai","doi":"10.1109/ISVLSI.2014.41","DOIUrl":null,"url":null,"abstract":"With the advent of deep submicron CMOS technology, process parameter statistical variations are increasing resulting in unpredictable device behaviour. The issue is even aggravated by low power requirements which are stretching transistor operation into near/sub threshold regime. Consequently, traditional delay models fail to accurately capture the circuit behaviour. In view of this we introduce an Inverse Gaussian Distribution (IGD) based delay model, which accurately captures the delay distribution under process variations at ultra low, near or below threshold, power supply values. We demonstrate that the IGD model captures the transistor delay distribution with a greater accuracy than the traditional Gaussian one. Moreover it exhibits linear compositionality such that the key model parameters can be straightforward propagated form device/gate level to circuit level. Our simulations indicate that, when compared with Monte Carlo SPICE simulation results, it provides high accuracy, e.g., an average error less than 0.8%, 1.2%, and 1.7% for Majority Voter, XOR gate, and 16-bit Ripple Carry Adder, respectively, while providing orders of magnitude simulation time reductions.","PeriodicalId":405755,"journal":{"name":"2014 IEEE Computer Society Annual Symposium on VLSI","volume":"24 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2014.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

With the advent of deep submicron CMOS technology, process parameter statistical variations are increasing resulting in unpredictable device behaviour. The issue is even aggravated by low power requirements which are stretching transistor operation into near/sub threshold regime. Consequently, traditional delay models fail to accurately capture the circuit behaviour. In view of this we introduce an Inverse Gaussian Distribution (IGD) based delay model, which accurately captures the delay distribution under process variations at ultra low, near or below threshold, power supply values. We demonstrate that the IGD model captures the transistor delay distribution with a greater accuracy than the traditional Gaussian one. Moreover it exhibits linear compositionality such that the key model parameters can be straightforward propagated form device/gate level to circuit level. Our simulations indicate that, when compared with Monte Carlo SPICE simulation results, it provides high accuracy, e.g., an average error less than 0.8%, 1.2%, and 1.7% for Majority Voter, XOR gate, and 16-bit Ripple Carry Adder, respectively, while providing orders of magnitude simulation time reductions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于亚功率组合电路时序分析的线性组合延迟模型
随着深亚微米CMOS技术的出现,工艺参数统计变化正在增加,导致不可预测的器件行为。低功耗要求将晶体管工作扩展到接近/亚阈值范围,这甚至加剧了这个问题。因此,传统的延迟模型不能准确地捕捉电路的行为。鉴于此,我们引入了一种基于逆高斯分布(IGD)的延迟模型,该模型可以准确捕获超低、接近或低于阈值的电源值下过程变化下的延迟分布。我们证明了IGD模型比传统的高斯模型更准确地捕获晶体管延迟分布。此外,它还表现出线性组合性,使得关键模型参数可以直接从器件/栅极级传播到电路级。我们的模拟表明,与Monte Carlo SPICE模拟结果相比,它提供了很高的准确性,例如,对于Majority Voter, XOR门和16位纹波进位加法器,它的平均误差分别小于0.8%,1.2%和1.7%,同时提供了数量级的模拟时间减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuromemristive Extreme Learning Machines for Pattern Classification Cost-Effective Test Optimized Scheme of TSV-Based 3D SoCs for Pre-Bond Test Independently-Controlled-Gate FinFET 6T SRAM Cell Design for Leakage Current Reduction and Enhanced Read Access Speed Physical vs. Physically-Aware Estimation Flow: Case Study of Design Space Exploration of Adders A Weighted Sensing Scheme for ReRAM-Based Cross-Point Memory Array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1