On-Line Electrical Supply Generation Fuel Mix Data Analysis using Python and TensorFlow

I. Grout, Willian Assis Pedrobon de Ferreira, Alexandre Rodrigues Silva
{"title":"On-Line Electrical Supply Generation Fuel Mix Data Analysis using Python and TensorFlow","authors":"I. Grout, Willian Assis Pedrobon de Ferreira, Alexandre Rodrigues Silva","doi":"10.1109/ICPEI47862.2019.8944972","DOIUrl":null,"url":null,"abstract":"In this paper, the Python scripting language and TensorFlow open source platform for machine learning is used to create a software script that can automatically extract electricity supply generation data from an on-line resource and use machine learning techniques to analyze the available data for the creation of end-user information. An on-line resource was chosen where the data could be readily extracted and stored in multi-dimensional TensorFlow arrays for analysis. The usefulness of such generated end-user information is however based on the accuracy of the information and any biases introduced in the data collation, data presentation, data analysis and results presentation, along with the perceptions of the enduser. With these considerations in mind, this paper focuses on the aspects relating to the creation, operation and use of the Python and TensorFlow script.","PeriodicalId":128066,"journal":{"name":"2019 International Conference on Power, Energy and Innovations (ICPEI)","volume":"EM-20 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Power, Energy and Innovations (ICPEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEI47862.2019.8944972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the Python scripting language and TensorFlow open source platform for machine learning is used to create a software script that can automatically extract electricity supply generation data from an on-line resource and use machine learning techniques to analyze the available data for the creation of end-user information. An on-line resource was chosen where the data could be readily extracted and stored in multi-dimensional TensorFlow arrays for analysis. The usefulness of such generated end-user information is however based on the accuracy of the information and any biases introduced in the data collation, data presentation, data analysis and results presentation, along with the perceptions of the enduser. With these considerations in mind, this paper focuses on the aspects relating to the creation, operation and use of the Python and TensorFlow script.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Python和TensorFlow进行在线发电燃料混合数据分析
本文使用Python脚本语言和机器学习开源平台TensorFlow创建一个软件脚本,该脚本可以自动从在线资源中提取电力供应生成数据,并使用机器学习技术分析可用数据以创建最终用户信息。选择一个在线资源,其中数据可以很容易地提取并存储在多维TensorFlow数组中进行分析。然而,这种生成的最终用户信息的有用性取决于信息的准确性和在数据整理、数据呈现、数据分析和结果呈现过程中引入的任何偏差,以及最终用户的看法。考虑到这些因素,本文将重点关注与Python和TensorFlow脚本的创建、操作和使用相关的方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Photovoltaic Power Generation Forecast by Using Estimator Model and Kalman Filter Electrical Performance Testing of AC Motors DSP Applications for Adaptive Detection of Harmonic Current Distortions in Power System Comparative Study of Available Fuels for Boiler Selection Designing Harmonic Filters for Improving Power Factor and Quality of Synchronous Generator in Sugar Mill Plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1