Kubebench: A Benchmarking Platform for ML Workloads

Xinyuan Huang, Amit Kumar Saha, Debojyoti Dutta, Ce Gao
{"title":"Kubebench: A Benchmarking Platform for ML Workloads","authors":"Xinyuan Huang, Amit Kumar Saha, Debojyoti Dutta, Ce Gao","doi":"10.1109/AI4I.2018.8665688","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) workloads are becoming mainstream in the enterprise but the plethora of choices around ML toolkits and multi-cloud infrastructure make it difficult to compare their performance and costs. In this paper, we motivate the need for benchmarking ML systems in a consistent way, discuss the requirements of an ML benchmarking platform, and propose a design that satisfies the requirements. We present Kubebench, an example open-source implementation of an ML benchmarking platform based on Kubeflow, itself an open-source project for managing any ML stack on Kubernetes, a widely used container management platform.","PeriodicalId":133657,"journal":{"name":"2018 First International Conference on Artificial Intelligence for Industries (AI4I)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I.2018.8665688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Machine Learning (ML) workloads are becoming mainstream in the enterprise but the plethora of choices around ML toolkits and multi-cloud infrastructure make it difficult to compare their performance and costs. In this paper, we motivate the need for benchmarking ML systems in a consistent way, discuss the requirements of an ML benchmarking platform, and propose a design that satisfies the requirements. We present Kubebench, an example open-source implementation of an ML benchmarking platform based on Kubeflow, itself an open-source project for managing any ML stack on Kubernetes, a widely used container management platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kubebench: ML工作负载的基准测试平台
机器学习(ML)工作负载正在成为企业的主流,但是围绕ML工具包和多云基础设施的大量选择使得很难比较它们的性能和成本。在本文中,我们激发了以一致的方式对ML系统进行基准测试的需求,讨论了ML基准测试平台的需求,并提出了满足需求的设计。Kubebench是一个基于Kubeflow的机器学习基准测试平台的开源实现,Kubeflow本身是一个开源项目,用于管理Kubernetes上的任何机器学习堆栈,Kubernetes是一个广泛使用的容器管理平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assisting Seismic Image Interpretations with Hyperknowledge Applying Machine Learning to Service Assurance in Network Function Virtualization Environment Combinatorial Algorithms in Machine Learning AI Application to Data Analysis, Automatic File Processing Multi-Layer Nested Scatter Plot a Data Wrangling Method for Correlated Multi-Channel Time Series Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1