Multiscale nonlocal means for image denoising

Xiaoyan Liu, Xiangchu Feng, Yu Han
{"title":"Multiscale nonlocal means for image denoising","authors":"Xiaoyan Liu, Xiangchu Feng, Yu Han","doi":"10.1109/ICWAPR.2013.6599322","DOIUrl":null,"url":null,"abstract":"The non-local means method (NLM) is widely used in image denoising. However, the performance of this method heavily depends on the choice of smoothness parameters. In this paper, we present a novel multi-scale non-local means method (MNLM) for image denoising. By introducing the multi-scale decomposition of images, our method can avoid the difficulty of choosing the smoothness parameters. Compared with the classical NLM method, MNLM not only improves the accuracy of the measurement of similarity, but also generates better denoising results.","PeriodicalId":236156,"journal":{"name":"2013 International Conference on Wavelet Analysis and Pattern Recognition","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2013.6599322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The non-local means method (NLM) is widely used in image denoising. However, the performance of this method heavily depends on the choice of smoothness parameters. In this paper, we present a novel multi-scale non-local means method (MNLM) for image denoising. By introducing the multi-scale decomposition of images, our method can avoid the difficulty of choosing the smoothness parameters. Compared with the classical NLM method, MNLM not only improves the accuracy of the measurement of similarity, but also generates better denoising results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像去噪的多尺度非局部方法
非局部均值法(NLM)在图像去噪中应用广泛。然而,该方法的性能在很大程度上取决于平滑参数的选择。本文提出了一种新的多尺度非局部均值图像去噪方法。该方法通过引入图像的多尺度分解,避免了平滑参数选择的困难。与经典的NLM方法相比,MNLM不仅提高了相似度测量的精度,而且产生了更好的去噪结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Super-resolution via K-means sparse coding L2-Boosting-based dictionary learning for super-resolution Classification of power quality disturbances based on independent component analysis and support vector machine Recent developments in perceptual video coding A novel fisher criterion based approach for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1