A methodology for quality assessment in tensor images

E. Muñoz-Moreno, S. Aja‐Fernández, M. Martín-Fernández
{"title":"A methodology for quality assessment in tensor images","authors":"E. Muñoz-Moreno, S. Aja‐Fernández, M. Martín-Fernández","doi":"10.1109/CVPRW.2008.4562965","DOIUrl":null,"url":null,"abstract":"Since tensor usage has become more and more popular in image processing, the assessment of the quality between tensor images is necessary for the evaluation of the advanced processing algorithms that deal with this kind of data. In this paper, we expose the methodology that should be followed to extend well-known image quality measures to tensor data. Two of these measures based on structural comparison are adapted to tensor images and their performance is shown by a set of examples. By means of these experiments the advantages of structural based measures will be highlighted, as well as the need for considering all the tensor components in the quality assessment.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4562965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Since tensor usage has become more and more popular in image processing, the assessment of the quality between tensor images is necessary for the evaluation of the advanced processing algorithms that deal with this kind of data. In this paper, we expose the methodology that should be followed to extend well-known image quality measures to tensor data. Two of these measures based on structural comparison are adapted to tensor images and their performance is shown by a set of examples. By means of these experiments the advantages of structural based measures will be highlighted, as well as the need for considering all the tensor components in the quality assessment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
张量图像质量评价方法
由于张量的使用在图像处理中越来越普遍,因此评价处理这类数据的高级处理算法需要对张量图像之间的质量进行评估。在本文中,我们揭示了应该遵循的方法,将众所周知的图像质量度量扩展到张量数据。其中两种基于结构比较的度量方法适用于张量图像,并通过一组实例展示了它们的性能。通过这些实验,将突出基于结构的度量的优势,以及在质量评估中考虑所有张量分量的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-fiber reconstruction from DW-MRI using a continuous mixture of von Mises-Fisher distributions New insights into the calibration of ToF-sensors Circular generalized cylinder fitting for 3D reconstruction in endoscopic imaging based on MRF A GPU-based implementation of motion detection from a moving platform Face model fitting based on machine learning from multi-band images of facial components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1