Parallel Computing Framework Based on MapReduce and GPU Clusters

Chunlei Xu, Weijin Zhuang
{"title":"Parallel Computing Framework Based on MapReduce and GPU Clusters","authors":"Chunlei Xu, Weijin Zhuang","doi":"10.1145/3424978.3425051","DOIUrl":null,"url":null,"abstract":"In recent years, driven by hardware technology, the computing power and programmability of GPUs have been rapidly developed. With the characteristics of highly parallel computing, GPUs are no longer limited to daily graphics processing tasks. It begins to involve a wider range of high-performance generalpurpose computing field. One of the hotspots in the field of highperformance parallel computing is MapReduce, a massive data processing framework. Through inexpensive ordinary computer clusters, we can obtain large-scale data computing capabilities that were previously only owned by expensive large servers. However, most existing MapReduce systems run on CPU clusters, and the computing performance of a single node is limited. Therefore, this paper proposes a parallel computing framework based on GPU cluster and MapReduce, and validates the effectiveness of the framework through experiments. Experiments have proven that our framework can complete the work, and it has a significant speedup for large-scale applications.","PeriodicalId":178822,"journal":{"name":"Proceedings of the 4th International Conference on Computer Science and Application Engineering","volume":"248 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Computer Science and Application Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3424978.3425051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, driven by hardware technology, the computing power and programmability of GPUs have been rapidly developed. With the characteristics of highly parallel computing, GPUs are no longer limited to daily graphics processing tasks. It begins to involve a wider range of high-performance generalpurpose computing field. One of the hotspots in the field of highperformance parallel computing is MapReduce, a massive data processing framework. Through inexpensive ordinary computer clusters, we can obtain large-scale data computing capabilities that were previously only owned by expensive large servers. However, most existing MapReduce systems run on CPU clusters, and the computing performance of a single node is limited. Therefore, this paper proposes a parallel computing framework based on GPU cluster and MapReduce, and validates the effectiveness of the framework through experiments. Experiments have proven that our framework can complete the work, and it has a significant speedup for large-scale applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MapReduce和GPU集群的并行计算框架
近年来,在硬件技术的推动下,gpu的计算能力和可编程性得到了迅速发展。gpu具有高度并行计算的特点,不再局限于日常的图形处理任务。它开始涉及更广泛的高性能通用计算领域。海量数据处理框架MapReduce是高性能并行计算领域的热点之一。通过廉价的普通计算机集群,我们可以获得以前只有昂贵的大型服务器才拥有的大规模数据计算能力。然而,现有的MapReduce系统大多运行在CPU集群上,单个节点的计算性能有限。因此,本文提出了一种基于GPU集群和MapReduce的并行计算框架,并通过实验验证了该框架的有效性。实验证明,我们的框架可以完成这些工作,并且对于大规模应用具有显著的加速效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on Improved Algorithm of RSSI Correction and Location in Mine-well Based on Bluetooth Positioning Information Distributed Predefined-time Consensus Tracking Protocol for Multi-agent Systems Evaluation Method Study of Blog's Subject Influence and User's Subject Influence Performance Evaluation of Full Turnover-based Policy in the Flow-rack AS/RS A Hybrid Encoding Based Particle Swarm Optimizer for Feature Selection and Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1