F. Luna, Rafael Marcos Luque Baena, Jesús Martínez, J. Valenzuela-Valdés, P. Padilla
{"title":"Addressing the 5G Cell Switch-off Problem with a Multi-objective Cellular Genetic Algorithm","authors":"F. Luna, Rafael Marcos Luque Baena, Jesús Martínez, J. Valenzuela-Valdés, P. Padilla","doi":"10.1109/5GWF.2018.8517066","DOIUrl":null,"url":null,"abstract":"The power consumption foreseen for 5G networks is expected to be substantially greater than that of 4G systems, mainly because of the ultra-dense deployments required to meet the upcoming traffic demands. This paper deals with a multi-objective formulation of the Cell Switch-Off (CSO) problem, a well-known and effective approach to save energy in such dense scenarios, which is addressed with an accurate, yet rather unknown multi-objective metaheuristic called MOCell (multi-objective cellular genetic algorithm). It has been evaluated over a different set of networks of increasing densification levels. The results have shown that MOCell is able to reach major energy savings when compared to a widely used multi-objective algorithm.","PeriodicalId":440445,"journal":{"name":"2018 IEEE 5G World Forum (5GWF)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5G World Forum (5GWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/5GWF.2018.8517066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
The power consumption foreseen for 5G networks is expected to be substantially greater than that of 4G systems, mainly because of the ultra-dense deployments required to meet the upcoming traffic demands. This paper deals with a multi-objective formulation of the Cell Switch-Off (CSO) problem, a well-known and effective approach to save energy in such dense scenarios, which is addressed with an accurate, yet rather unknown multi-objective metaheuristic called MOCell (multi-objective cellular genetic algorithm). It has been evaluated over a different set of networks of increasing densification levels. The results have shown that MOCell is able to reach major energy savings when compared to a widely used multi-objective algorithm.