Group selection and its application to constrained evolutionary optimization

Ming Chang, K. Ohkura, K. Ueda, M. Sugiyama
{"title":"Group selection and its application to constrained evolutionary optimization","authors":"Ming Chang, K. Ohkura, K. Ueda, M. Sugiyama","doi":"10.1109/CEC.2003.1299642","DOIUrl":null,"url":null,"abstract":"Multilevel selection theory views natural selection as hierarchy process that acts on any level of biological organizations whenever there exist heritable variation in fitness among units of that level. In this paper, selection schemes of evolutionary algorithms (EAs) are reconsidered from the point of view of the theory, and a novel constraint handling method is introduced in which a two-level selection process, namely within-group selection and between-group selection, is modeled to keep right balance between objective and penalty functions. The method is implemented on 3 group selection models that possessing different population structures and tested using (/spl mu/, /spl lambda/)-evolution strategies on a set of 13 benchmark problems. We show that a proper understanding of multilevel selection theory will help us to design EAs and might also enable us to challenge the old problems from a new angle.","PeriodicalId":416243,"journal":{"name":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2003.1299642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Multilevel selection theory views natural selection as hierarchy process that acts on any level of biological organizations whenever there exist heritable variation in fitness among units of that level. In this paper, selection schemes of evolutionary algorithms (EAs) are reconsidered from the point of view of the theory, and a novel constraint handling method is introduced in which a two-level selection process, namely within-group selection and between-group selection, is modeled to keep right balance between objective and penalty functions. The method is implemented on 3 group selection models that possessing different population structures and tested using (/spl mu/, /spl lambda/)-evolution strategies on a set of 13 benchmark problems. We show that a proper understanding of multilevel selection theory will help us to design EAs and might also enable us to challenge the old problems from a new angle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
群体选择及其在约束进化优化中的应用
多层次选择理论认为,自然选择是一种等级过程,它作用于任何水平的生物组织,只要该水平上的单位之间存在可遗传的适应度变异。本文从理论的角度对进化算法的选择方案进行了重新思考,并引入了一种新的约束处理方法,该方法采用两级选择过程,即群内选择和群间选择,以保持目标函数和惩罚函数之间的适当平衡。该方法在具有不同种群结构的3个群体选择模型上实现,并在13个基准问题上使用(/spl mu/, /spl lambda/)进化策略进行了测试。研究表明,正确理解多层次选择理论将有助于我们设计ea,也可能使我们能够从新的角度挑战老问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Searching oligo sets of human chromosome 12 using evolutionary strategies A nonlinear control system design based on HJB/HJI/FBI equations via differential genetic programming approach Particle swarm optimizers for Pareto optimization with enhanced archiving techniques Epigenetic programming: an approach of embedding epigenetic learning via modification of histones in genetic programming A new particle swarm optimiser for linearly constrained optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1