Decidability of Non-interactive Simulation of Joint Distributions

Badih Ghazi, Pritish Kamath, M. Sudan
{"title":"Decidability of Non-interactive Simulation of Joint Distributions","authors":"Badih Ghazi, Pritish Kamath, M. Sudan","doi":"10.1109/FOCS.2016.65","DOIUrl":null,"url":null,"abstract":"We present decidability results for a sub-class of \"non-interactive\" simulation problems, a well-studied class of problems in information theory. A non-interactive simulation problem is specified by two distributions P(x, y) and Q(u, v): The goal is to determine if two players, Alice and Bob, that observe sequences Xn and Yn respectively where {(Xi, Yi)}ni = 1 are drawn i.i.d. from P(x, y) can generate pairs U and V respectively (without communicating with each other) with a joint distribution that is arbitrarily close in total variation to Q(u, v). Even when P and Q are extremely simple: e.g., P is uniform on the triples (0, 0), (0,1), (1,0) and Q is a \"doubly symmetric binary source\", i.e., U and V are uniform ± 1 variables with correlation say 0.49, it is open if P can simulate Q. In this work, we show that whenever P is a distribution on a finite domain and Q is a 2 × 2 distribution, then the non-interactive simulation problem is decidable: specifically, given δ > 0 the algorithm runs in time bounded by some function of P and δ and either gives a non-interactive simulation protocol that is δ-close to Q or asserts that no protocol gets O(δ)-close to Q. The main challenge to such a result is determining explicit (computable) convergence bounds on the number n of samples that need to be drawn from P(x, y) to get δ-close to Q. We invoke contemporary results from the analysis of Boolean functions such as the invariance principle and a regularity lemma to obtain such explicit bounds.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"34 48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We present decidability results for a sub-class of "non-interactive" simulation problems, a well-studied class of problems in information theory. A non-interactive simulation problem is specified by two distributions P(x, y) and Q(u, v): The goal is to determine if two players, Alice and Bob, that observe sequences Xn and Yn respectively where {(Xi, Yi)}ni = 1 are drawn i.i.d. from P(x, y) can generate pairs U and V respectively (without communicating with each other) with a joint distribution that is arbitrarily close in total variation to Q(u, v). Even when P and Q are extremely simple: e.g., P is uniform on the triples (0, 0), (0,1), (1,0) and Q is a "doubly symmetric binary source", i.e., U and V are uniform ± 1 variables with correlation say 0.49, it is open if P can simulate Q. In this work, we show that whenever P is a distribution on a finite domain and Q is a 2 × 2 distribution, then the non-interactive simulation problem is decidable: specifically, given δ > 0 the algorithm runs in time bounded by some function of P and δ and either gives a non-interactive simulation protocol that is δ-close to Q or asserts that no protocol gets O(δ)-close to Q. The main challenge to such a result is determining explicit (computable) convergence bounds on the number n of samples that need to be drawn from P(x, y) to get δ-close to Q. We invoke contemporary results from the analysis of Boolean functions such as the invariance principle and a regularity lemma to obtain such explicit bounds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联合分布非交互仿真的可判定性
本文给出了信息论中一类被广泛研究的“非交互”模拟问题的可决性结果。例如,P在三元组(0,0),(0,1),(1,0)上是均匀的,Q是“双对称二进制源”,即U和V是均匀的±1个变量,相关性为0.49,如果P能模拟Q是开的。本文证明,当P是有限域上的分布,Q是2 × 2分布时,则非交互模拟问题是可判定的:具体来说,给定δ > 0,算法在由P和δ的某些函数限定的时间内运行,并且要么给出δ-接近Q的非交互式模拟协议,要么断言没有协议得到O(δ)-接近Q。这种结果的主要挑战是确定需要从P(x)中提取的样本数n的显式(可计算)收敛界。y)得到δ-接近q。我们引用了布尔函数分析的当代结果,如不变性原理和正则引理来获得这样的显式边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exponential Lower Bounds for Monotone Span Programs Truly Sub-cubic Algorithms for Language Edit Distance and RNA-Folding via Fast Bounded-Difference Min-Plus Product Polynomial-Time Tensor Decompositions with Sum-of-Squares Decremental Single-Source Reachability and Strongly Connected Components in Õ(m√n) Total Update Time NP-Hardness of Reed-Solomon Decoding and the Prouhet-Tarry-Escott Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1