Developing Privacy-preserving AI Systems: The Lessons learned

Huili Chen, S. Hussain, Fabian Boemer, Emmanuel Stapf, A. Sadeghi, F. Koushanfar, Rosario Cammarota
{"title":"Developing Privacy-preserving AI Systems: The Lessons learned","authors":"Huili Chen, S. Hussain, Fabian Boemer, Emmanuel Stapf, A. Sadeghi, F. Koushanfar, Rosario Cammarota","doi":"10.1109/DAC18072.2020.9218662","DOIUrl":null,"url":null,"abstract":"Advances in customers' data privacy laws create pressures and pain points across the entire lifecycle of AI products. Working figures such as data scientists and data engineers need to account for the correct use of privacy-enhancing technologies such as homomorphic encryption, secure multi-party computation, and trusted execution environment when they develop, test and deploy products embedding AI models while providing data protection guarantees. In this work, we share the lessons learned during the development of frameworks to aid data scientists and data engineers to map their optimized workloads onto privacy-enhancing technologies seamlessly and correctly.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Advances in customers' data privacy laws create pressures and pain points across the entire lifecycle of AI products. Working figures such as data scientists and data engineers need to account for the correct use of privacy-enhancing technologies such as homomorphic encryption, secure multi-party computation, and trusted execution environment when they develop, test and deploy products embedding AI models while providing data protection guarantees. In this work, we share the lessons learned during the development of frameworks to aid data scientists and data engineers to map their optimized workloads onto privacy-enhancing technologies seamlessly and correctly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发保护隐私的人工智能系统:经验教训
客户数据隐私法的进步给人工智能产品的整个生命周期带来了压力和痛点。数据科学家和数据工程师等工作人员在开发、测试和部署嵌入人工智能模型的产品时,在提供数据保护保证的同时,需要考虑到正确使用同态加密、安全多方计算、可信执行环境等增强隐私的技术。在这项工作中,我们分享了在框架开发过程中获得的经验教训,以帮助数据科学家和数据工程师将其优化的工作负载无缝且正确地映射到隐私增强技术上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1