Upgrade of the CMS Barrel Muon Track Finder for HL-LHC featuring a Kalman Filter algorithm and an ATCA Host Processor with Ultrascale+ FPGAs

C. Foudas, P. Katsoulis, T. Lama, S. Mallios, G. Karathanasis, I. Papavergou, S. Regnard, M. Tepper, P. Sphicas, Constantinos Vellidis, G. Karathanasis, M. Bachtis
{"title":"Upgrade of the CMS Barrel Muon Track Finder for HL-LHC featuring a Kalman Filter algorithm and an ATCA Host Processor with Ultrascale+ FPGAs","authors":"C. Foudas, P. Katsoulis, T. Lama, S. Mallios, G. Karathanasis, I. Papavergou, S. Regnard, M. Tepper, P. Sphicas, Constantinos Vellidis, G. Karathanasis, M. Bachtis","doi":"10.22323/1.343.0139","DOIUrl":null,"url":null,"abstract":"The Barrel Muon Track finder of the CMS experiment at the Large Hadron Collider uses custom \nprocessors to identify muons and measure their momenta in the central region of the CMS detector. An upgrade of the L1 tracking algorithm is presented, featuring a Kalman Filter in FPGAs, \nimplemented using High Level Synthesis tools. The matrix operations are mapped to the DSP \ncores reducing resource utilization to a level that allows the new algorithm to fit in the same \nFPGA as the legacy one, thus enabling studies during nominal CMS data taking. The algorithm \nperformance has been verified in CMS collisions during 2018 operations. The algorithm is also \nproposed for standalone muon tracking at the High Luminosity LHC. The algorithm development \nis complemented by ATCA processor R&D featuring a large ZYNQ Ultrascale+ SoC with high \nspeed optical links.","PeriodicalId":400748,"journal":{"name":"Proceedings of Topical Workshop on Electronics for Particle Physics — PoS(TWEPP2018)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Topical Workshop on Electronics for Particle Physics — PoS(TWEPP2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.343.0139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Barrel Muon Track finder of the CMS experiment at the Large Hadron Collider uses custom processors to identify muons and measure their momenta in the central region of the CMS detector. An upgrade of the L1 tracking algorithm is presented, featuring a Kalman Filter in FPGAs, implemented using High Level Synthesis tools. The matrix operations are mapped to the DSP cores reducing resource utilization to a level that allows the new algorithm to fit in the same FPGA as the legacy one, thus enabling studies during nominal CMS data taking. The algorithm performance has been verified in CMS collisions during 2018 operations. The algorithm is also proposed for standalone muon tracking at the High Luminosity LHC. The algorithm development is complemented by ATCA processor R&D featuring a large ZYNQ Ultrascale+ SoC with high speed optical links.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
升级用于HL-LHC的CMS桶状介子寻迹器,采用卡尔曼滤波算法和ATCA主机处理器,采用Ultrascale+ fpga
大型强子对撞机CMS实验的桶形μ子轨迹探测器使用定制处理器识别μ子并测量其在CMS探测器中心区域的动量。提出了一种L1跟踪算法的升级版,采用fpga中的卡尔曼滤波器,使用高级合成工具实现。矩阵运算映射到DSP核心,将资源利用率降低到允许新算法与传统算法适用于同一FPGA的水平,从而能够在标称CMS数据采集期间进行研究。该算法的性能已在2018年的CMS碰撞中得到验证。本文还提出了在高亮度大型强子对撞机上进行独立μ子跟踪的算法。算法开发由ATCA处理器研发补充,该处理器具有具有高速光链路的大型ZYNQ Ultrascale+ SoC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High Dynamic Range ASIC for Time of Flight PET with monolithic crystals An Ultra-Fast 10Gb/s 64b66b Data Serialiser Backend in 65nm CMOS Technology ALICE trigger system for LHC Run 3 First Double-Sided End-Cap Strip Module for the ATLAS High-Luminosity Upgrade A collaborative HDL management tool for ATLAS L1Calo upgrades
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1