Improved Parallel Wavegan Vocoder with Perceptually Weighted Spectrogram Loss

Eunwoo Song, Ryuichi Yamamoto, Min-Jae Hwang, Jin-Seob Kim, Ohsung Kwon, Jae-Min Kim
{"title":"Improved Parallel Wavegan Vocoder with Perceptually Weighted Spectrogram Loss","authors":"Eunwoo Song, Ryuichi Yamamoto, Min-Jae Hwang, Jin-Seob Kim, Ohsung Kwon, Jae-Min Kim","doi":"10.1109/SLT48900.2021.9383549","DOIUrl":null,"url":null,"abstract":"This paper proposes a spectral-domain perceptual weighting technique for Parallel WaveGAN-based text-to-speech (TTS) systems. The recently proposed Parallel WaveGAN vocoder successfully generates waveform sequences using a fast non-autoregressive WaveNet model. By employing multi-resolution short-time Fourier transform (MR-STFT) criteria with a generative adversarial network, the light-weight convolutional networks can be effectively trained without any distillation process. To further improve the vocoding performance, we propose the application of frequency-dependent weighting to the MR-STFT loss function. The proposed method penalizes perceptually-sensitive errors in the frequency domain; thus, the model is optimized toward reducing auditory noise in the synthesized speech. Subjective listening test results demonstrate that our proposed method achieves 4.21 and 4.26 TTS mean opinion scores for female and male Korean speakers, respectively.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"43 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper proposes a spectral-domain perceptual weighting technique for Parallel WaveGAN-based text-to-speech (TTS) systems. The recently proposed Parallel WaveGAN vocoder successfully generates waveform sequences using a fast non-autoregressive WaveNet model. By employing multi-resolution short-time Fourier transform (MR-STFT) criteria with a generative adversarial network, the light-weight convolutional networks can be effectively trained without any distillation process. To further improve the vocoding performance, we propose the application of frequency-dependent weighting to the MR-STFT loss function. The proposed method penalizes perceptually-sensitive errors in the frequency domain; thus, the model is optimized toward reducing auditory noise in the synthesized speech. Subjective listening test results demonstrate that our proposed method achieves 4.21 and 4.26 TTS mean opinion scores for female and male Korean speakers, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于感知加权谱图损失的改进并行波形声码器
本文提出了一种基于并行wavegan的文本转语音(TTS)系统的频谱域感知加权技术。最近提出的并行WaveGAN声码器利用快速非自回归WaveNet模型成功地生成了波形序列。通过将多分辨率短时傅里叶变换(MR-STFT)准则与生成对抗网络相结合,可以有效地训练轻量级卷积网络,而无需进行任何蒸馏处理。为了进一步提高语音编码的性能,我们提出将频率相关加权应用于MR-STFT损失函数。该方法在频域对感知敏感误差进行惩罚;因此,该模型朝着降低合成语音中的听觉噪声的方向进行了优化。主观听力测试结果表明,我们提出的方法对女性和男性韩语使用者的TTS平均意见得分分别为4.21和4.26。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Through the Words of Viewers: Using Comment-Content Entangled Network for Humor Impression Recognition Analysis of Multimodal Features for Speaking Proficiency Scoring in an Interview Dialogue Convolution-Based Attention Model With Positional Encoding For Streaming Speech Recognition On Embedded Devices Two-Stage Augmentation and Adaptive CTC Fusion for Improved Robustness of Multi-Stream end-to-end ASR Speaker-Independent Visual Speech Recognition with the Inception V3 Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1