Spatio-temporal relationships and video object extraction

Yining Deng, B. S. Manjunath
{"title":"Spatio-temporal relationships and video object extraction","authors":"Yining Deng, B. S. Manjunath","doi":"10.1109/ACSSC.1998.751011","DOIUrl":null,"url":null,"abstract":"An object-based representation for video data can facilitate video search and content analysis. Detecting physical meaningful video object is a challenging open issue, and requires intelligent spatio-temporal segmentation and tracking. Normally, this is done through spatio-temporal segmentation and region tracking. In this work, some of the practical issues of segmentation and tracking problems are addressed. Due to the limitation of using low-level visual features in the segmentation, the tracked regions are more likely to be fragmented parts of some meaningful objects. However if a collection of video shots that contain a particular object of interest are given, spatio-temporal correlations would exist between the neighboring regions of the object. A method of mining association rules is used to discover these patterns and thus to find possible objects in the scene. Initial experimental results of this approach are shown.","PeriodicalId":393743,"journal":{"name":"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1998.751011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

An object-based representation for video data can facilitate video search and content analysis. Detecting physical meaningful video object is a challenging open issue, and requires intelligent spatio-temporal segmentation and tracking. Normally, this is done through spatio-temporal segmentation and region tracking. In this work, some of the practical issues of segmentation and tracking problems are addressed. Due to the limitation of using low-level visual features in the segmentation, the tracked regions are more likely to be fragmented parts of some meaningful objects. However if a collection of video shots that contain a particular object of interest are given, spatio-temporal correlations would exist between the neighboring regions of the object. A method of mining association rules is used to discover these patterns and thus to find possible objects in the scene. Initial experimental results of this approach are shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时空关系与视频对象提取
基于对象的视频数据表示可以方便视频搜索和内容分析。检测物理意义的视频对象是一个具有挑战性的开放性问题,需要智能的时空分割和跟踪。通常,这是通过时空分割和区域跟踪来完成的。在这项工作中,解决了分割和跟踪问题的一些实际问题。由于在分割中使用底层视觉特征的限制,跟踪的区域更有可能是一些有意义对象的碎片部分。然而,如果给定一组包含特定感兴趣对象的视频镜头,则该对象的邻近区域之间将存在时空相关性。使用关联规则挖掘方法来发现这些模式,从而在场景中找到可能的对象。给出了该方法的初步实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Turbo multiuser detection Optimal joint azimuth-elevation and signal-array response estimation using parallel factor analysis Adaptive sidelobe blanker: a novel method of performance evaluation and threshold setting in the presence of inhomogeneous clutter Optimal architectures for massively parallel implementation of hard real-time beamformers Low complexity M-hypotheses detection: M vectors case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1