Testing and Evaluating the Single Objective Intelligent Evolutionary Algorithm through a Graphic Interface

O. Montiel, R. Sepúlveda, O. Castillo, O. Soto
{"title":"Testing and Evaluating the Single Objective Intelligent Evolutionary Algorithm through a Graphic Interface","authors":"O. Montiel, R. Sepúlveda, O. Castillo, O. Soto","doi":"10.1109/NAFIPS.2007.383910","DOIUrl":null,"url":null,"abstract":"The human evolutionary model is an intelligent global optimization method conceived to perform single and multiple objective optimization, this general method is still in development, especially the multi objective (MO) part is being improved. The single objective (SO) part has demonstrated that outperforms several algorithms that are in the state of the art, for example differential evolution (DE), particle swarm optimizer, and others, we called this part single objective intelligent evolutionary algorithm (SO-IEA). The SO-IEA uses mediative fuzzy logic (MFL) for handling doubtful and contradictory information from experts to calculate the appropriated amount of individuals to create and/or to eliminate. MFL is an extension of traditional fuzzy logic and includes intuitionistic fuzzy logic (IFL) in the Atanassov sense. In this work, we are presenting the algorithm's architecture, experimental results, and a graphical interface that will help to handle the required parameters to use the SO-IEA.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The human evolutionary model is an intelligent global optimization method conceived to perform single and multiple objective optimization, this general method is still in development, especially the multi objective (MO) part is being improved. The single objective (SO) part has demonstrated that outperforms several algorithms that are in the state of the art, for example differential evolution (DE), particle swarm optimizer, and others, we called this part single objective intelligent evolutionary algorithm (SO-IEA). The SO-IEA uses mediative fuzzy logic (MFL) for handling doubtful and contradictory information from experts to calculate the appropriated amount of individuals to create and/or to eliminate. MFL is an extension of traditional fuzzy logic and includes intuitionistic fuzzy logic (IFL) in the Atanassov sense. In this work, we are presenting the algorithm's architecture, experimental results, and a graphical interface that will help to handle the required parameters to use the SO-IEA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图形界面的单目标智能进化算法测试与评价
人类进化模型是一种以单目标和多目标优化为目的的智能全局优化方法,这种一般方法仍在发展中,特别是多目标部分正在改进中。单目标(SO)部分已经证明优于几种最先进的算法,例如差分进化(DE),粒子群优化器等,我们将这部分称为单目标智能进化算法(SO- iea)。SO-IEA使用中介模糊逻辑(MFL)来处理专家提供的可疑和矛盾的信息,以计算创造和/或消除个人的适当数量。模糊逻辑是传统模糊逻辑的扩展,包括阿塔纳索夫意义上的直觉模糊逻辑(IFL)。在这项工作中,我们介绍了算法的架构、实验结果和图形界面,这将有助于处理使用SO-IEA所需的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neighbourhood Sets based on Web Usage Mining Design an Intelligent Neural-Fuzzy Controller for Hybrid Motorcycle Fuzzy ROI Based 2-D/3-D Registration for Kinetic Analysis after Anterior Cruciate Ligament Reconstruction About the Division Operator in a Possibilistic Database Framework A Fast Structural Optimization Technique for IDS Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1