An Ontology Embedding Approach Based on Multiple Neural Networks

Achref Benarab, Fahad Rafique, Jianguo Sun
{"title":"An Ontology Embedding Approach Based on Multiple Neural Networks","authors":"Achref Benarab, Fahad Rafique, Jianguo Sun","doi":"10.1145/3318299.3318365","DOIUrl":null,"url":null,"abstract":"In this paper, we present a low-dimensional vector representation method for the concepts and instances of an ontology. The main idea is to transform the ontological entities into digestible data for machine learning and deep learning algorithms that only use digital inputs. The generated vectors will represent the semantics contained in the source ontology. We use the semantic relationships connecting the concepts as a landmark to train expert neural networks using the noise contrastive estimation technique to project them into a vector space specific to this relationship with weightings dependent on their frequency. The resulting vectors are then combined and fed into an autoencoder to generate a denser representation. The generated representation vectors can be used to find the semantically similar ontology entities, allowing creating a semantic network automatically. Thus, semantically similar ontology entities will have relatively close corresponding vector representations in the projection space.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a low-dimensional vector representation method for the concepts and instances of an ontology. The main idea is to transform the ontological entities into digestible data for machine learning and deep learning algorithms that only use digital inputs. The generated vectors will represent the semantics contained in the source ontology. We use the semantic relationships connecting the concepts as a landmark to train expert neural networks using the noise contrastive estimation technique to project them into a vector space specific to this relationship with weightings dependent on their frequency. The resulting vectors are then combined and fed into an autoencoder to generate a denser representation. The generated representation vectors can be used to find the semantically similar ontology entities, allowing creating a semantic network automatically. Thus, semantically similar ontology entities will have relatively close corresponding vector representations in the projection space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多神经网络的本体嵌入方法
本文提出了一种本体概念和实例的低维向量表示方法。其主要思想是将本体实体转换为仅使用数字输入的机器学习和深度学习算法可消化的数据。生成的向量将表示源本体中包含的语义。我们使用连接概念的语义关系作为里程碑来训练专家神经网络,使用噪声对比估计技术将它们投影到特定于这种关系的向量空间中,权重取决于它们的频率。然后将结果向量组合并馈送到自动编码器中以生成更密集的表示。生成的表示向量可用于寻找语义相似的本体实体,从而自动创建语义网络。因此,语义相似的本体实体在投影空间中具有相对接近的对应向量表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Competition for Multilayer Network Community Detection Power Load Forecasting Using a Refined LSTM Research on the Application of Big Data Management in Enterprise Management Decision-making and Execution Literature Review A Flexible Approach for Human Activity Recognition Based on Broad Learning System Decentralized Adaptive Latency-Aware Cloud-Edge-Dew Architecture for Unreliable Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1