Monotonicity of the Trace–Inverse of Covariance Submatrices and Two-Sided Prediction

A. Khina, A. Yeredor, R. Zamir
{"title":"Monotonicity of the Trace–Inverse of Covariance Submatrices and Two-Sided Prediction","authors":"A. Khina, A. Yeredor, R. Zamir","doi":"10.1109/ISIT50566.2022.9834592","DOIUrl":null,"url":null,"abstract":"It is common to assess the \"memory strength\" of a stationary process by looking at how fast the normalized log– determinant of its covariance submatrices (i.e., entropy rate) decreases. In this work, we propose an alternative characterization in terms of the normalized trace–inverse of the covariance submatrices. We show that this sequence is monotonically non-decreasing and is constant if and only if the process is white. Furthermore, while the entropy rate is associated with one-sided prediction errors (present from past), the new measure is associated with two-sided prediction errors (present from past and future). Minimizing this measure is then used as an alternative to Burg’s maximum-entropy principle for spectral estimation.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is common to assess the "memory strength" of a stationary process by looking at how fast the normalized log– determinant of its covariance submatrices (i.e., entropy rate) decreases. In this work, we propose an alternative characterization in terms of the normalized trace–inverse of the covariance submatrices. We show that this sequence is monotonically non-decreasing and is constant if and only if the process is white. Furthermore, while the entropy rate is associated with one-sided prediction errors (present from past), the new measure is associated with two-sided prediction errors (present from past and future). Minimizing this measure is then used as an alternative to Burg’s maximum-entropy principle for spectral estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协方差子矩阵迹逆的单调性与双侧预测
通常通过观察其协方差子矩阵(即熵率)的归一化对数行列式的下降速度来评估平稳过程的“记忆强度”。在这项工作中,我们提出了一种根据协方差子矩阵的归一化迹逆的替代表征。我们证明了这个序列是单调非递减的,并且当且仅当过程是白色时是常数。此外,虽然熵率与单侧预测误差(来自过去的现在)有关,但新测量与双侧预测误差(来自过去和未来的现在)有关。最小化这一措施,然后用作替代伯格的最大熵原理的频谱估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Low Rank column-wise Compressive Sensing Ternary Message Passing Decoding of RS-SPC Product Codes Understanding Deep Neural Networks Using Sliced Mutual Information Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network Unlimited Sampling via Generalized Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1