MPMatch: A Multi-core Parallel Subgraph Matching Algorithm

Xin Jin, Longbin Lai
{"title":"MPMatch: A Multi-core Parallel Subgraph Matching Algorithm","authors":"Xin Jin, Longbin Lai","doi":"10.1109/ICDEW.2019.000-6","DOIUrl":null,"url":null,"abstract":"Subgraph Matching is a fundamental problem in graph analysis, and is widely used in many application scenarios in biology, chemistry and social network. Given a data graph and a query graph, subgraph matching aims to compute all subgraphs of the data graph that are isomorphic to the query graph. The problem is computationally expensive as the core operation it depends on, known as subgraph isomorphism, is NP-complete. In recent years, graph is increasing extensively and it is hard to compute subgraph matching on massive graph data using existing serial algorithm. Meanwhile, there exist distributed solutions, but they are mostly limited to the case where the graphs are unlabelled. In response to this gap, we study the subgraph matching problem in the multi-core environment. From the algorithm level, we propose a multi-core parallel subgraph matching algorithm called MPMatch. From the research level, we explore the concurrent allocation of subgraph matching search space to approach load balancing. We conduct extensive empirical studies on real and synthetic graphs to demonstrate that our techniques improve the performance of serial subgraph matching algorithm via parallelization and well-developed load balancing schema.","PeriodicalId":186190,"journal":{"name":"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2019.000-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Subgraph Matching is a fundamental problem in graph analysis, and is widely used in many application scenarios in biology, chemistry and social network. Given a data graph and a query graph, subgraph matching aims to compute all subgraphs of the data graph that are isomorphic to the query graph. The problem is computationally expensive as the core operation it depends on, known as subgraph isomorphism, is NP-complete. In recent years, graph is increasing extensively and it is hard to compute subgraph matching on massive graph data using existing serial algorithm. Meanwhile, there exist distributed solutions, but they are mostly limited to the case where the graphs are unlabelled. In response to this gap, we study the subgraph matching problem in the multi-core environment. From the algorithm level, we propose a multi-core parallel subgraph matching algorithm called MPMatch. From the research level, we explore the concurrent allocation of subgraph matching search space to approach load balancing. We conduct extensive empirical studies on real and synthetic graphs to demonstrate that our techniques improve the performance of serial subgraph matching algorithm via parallelization and well-developed load balancing schema.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MPMatch:多核并行子图匹配算法
子图匹配是图分析中的一个基本问题,广泛应用于生物、化学和社会网络等领域。给定一个数据图和一个查询图,子图匹配的目的是计算数据图中与查询图同构的所有子图。这个问题的计算代价很高,因为它所依赖的核心操作,即子图同构,是np完全的。近年来,随着图的广泛发展,现有的串行算法难以对海量图数据进行子图匹配计算。同时,也存在分布式解决方案,但它们大多局限于图未标记的情况。针对这一缺陷,我们研究了多核环境下的子图匹配问题。在算法层面,我们提出了一种多核并行子图匹配算法MPMatch。在研究层面,我们探讨了子图匹配搜索空间的并发分配,以达到负载均衡。我们对真实图和合成图进行了广泛的实证研究,以证明我们的技术通过并行化和良好开发的负载平衡模式提高了串行子图匹配算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Triangle Counting on GPU Using Fine-Grained Task Distribution Distilling Knowledge from User Information for Document Level Sentiment Classification Reachability in Large Graphs Using Bloom Filters Food Image to Cooking Instructions Conversion Through Compressed Embeddings Using Deep Learning Predicting Online User Purchase Behavior Based on Browsing History
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1