Speed Control for PMSM Drive System Based on Sliding Mode Observer with Phase-Locked Loop and Variable Proportional Desaturation PI Regulator

W. Zihan, Zhao Mi, Liu XiMu, Lu Min
{"title":"Speed Control for PMSM Drive System Based on Sliding Mode Observer with Phase-Locked Loop and Variable Proportional Desaturation PI Regulator","authors":"W. Zihan, Zhao Mi, Liu XiMu, Lu Min","doi":"10.1109/peas53589.2021.9628730","DOIUrl":null,"url":null,"abstract":"The sensorless control methods in terms of the traditional sliding mode observer (SMO) will usually produce a large number of high frequency harmonics and integral saturation problems, which will lead to a large deviation of the estimated speed of the drive system and poor dynamic performance. Hence, a novel variable proportional desaturation proportional integral (VPDPI) speed regulator design method based on SMO with phase-locked loop (PLL) is proposed in this paper. Firstly, the PLL-SMO speed sensorless observation method is designed by self-closed-loop phase angle prediction, which greatly weakens the high frequency chattering caused by traditional SMO observation under PMSM vector control. Unfortunately, the integral saturation would be intensified due to the introduction of the PLL. To achieve it, a novel VPDPI speed regulator is further designed by combining the self-judging multi-mode switching mode with the concept of threshold segmentation, which ensures that the saturation problem in the PLL and the whole drive system can be totally eliminated. The experimental results indicate that the proposed sensorless drive system based on VPDPI regulator can accurately track the actual speed. Meanwhile, compared with the traditional PI control effect, it has better speed response performance.","PeriodicalId":268264,"journal":{"name":"2021 IEEE 1st International Power Electronics and Application Symposium (PEAS)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 1st International Power Electronics and Application Symposium (PEAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/peas53589.2021.9628730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sensorless control methods in terms of the traditional sliding mode observer (SMO) will usually produce a large number of high frequency harmonics and integral saturation problems, which will lead to a large deviation of the estimated speed of the drive system and poor dynamic performance. Hence, a novel variable proportional desaturation proportional integral (VPDPI) speed regulator design method based on SMO with phase-locked loop (PLL) is proposed in this paper. Firstly, the PLL-SMO speed sensorless observation method is designed by self-closed-loop phase angle prediction, which greatly weakens the high frequency chattering caused by traditional SMO observation under PMSM vector control. Unfortunately, the integral saturation would be intensified due to the introduction of the PLL. To achieve it, a novel VPDPI speed regulator is further designed by combining the self-judging multi-mode switching mode with the concept of threshold segmentation, which ensures that the saturation problem in the PLL and the whole drive system can be totally eliminated. The experimental results indicate that the proposed sensorless drive system based on VPDPI regulator can accurately track the actual speed. Meanwhile, compared with the traditional PI control effect, it has better speed response performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于锁相环滑模观测器和可变比例去饱和PI调节器的永磁同步电机驱动系统速度控制
基于传统滑模观测器(SMO)的无传感器控制方法通常会产生大量高频谐波和积分饱和问题,这将导致驱动系统的估计速度偏差较大,动态性能差。为此,本文提出了一种基于锁相环SMO的可变比例去饱和比例积分(VPDPI)调速器设计方法。首先,采用自闭环相位角预测的方法设计了锁相环-SMO无速度传感器观测方法,大大削弱了PMSM矢量控制下传统SMO观测引起的高频抖振;不幸的是,由于锁相环的引入,积分饱和将会加剧。为了实现这一目标,进一步设计了一种新型VPDPI调速器,将自判断多模切换模式与阈值分割的概念相结合,保证了锁相环和整个驱动系统的饱和问题可以完全消除。实验结果表明,基于VPDPI调节器的无传感器驱动系统能够准确跟踪实际速度。同时,与传统的PI控制效果相比,具有更好的速度响应性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Online Loop Gain Monitors for Power Converters in Microgrids A New Integrated Topology Design of Auxiliary Power Supply for Metro Circulating Current Injection Method for the Modular Multilevel Converter High-Frequency DC/DC Converter Based on Differential Load-Independent Class E Inverter Modeling and Parameter Identification of Supercapacitor Battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1