Avoiding Communication in Logistic Regression

Aditya Devarakonda, J. Demmel
{"title":"Avoiding Communication in Logistic Regression","authors":"Aditya Devarakonda, J. Demmel","doi":"10.1109/HiPC50609.2020.00023","DOIUrl":null,"url":null,"abstract":"Stochastic gradient descent (SGD) is one of the most widely used optimization methods for solving various machine learning problems. SGD solves an optimization problem by iteratively sampling a few data points from the input data, computing gradients for the selected data points, and updating the solution. However, in a parallel setting, SGD requires interprocess communication at every iteration. We introduce a new communication-avoiding technique for solving the logistic regression problem using SGD. This technique re-organizes the SGD computations into a form that communicates every $s$ iterations instead of every iteration, where $s$ is a tuning parameter. We prove theoretical flops, bandwidth, and latency upper bounds for SGD and its new communication-avoiding variant. Furthermore, we show experimental results that illustrate that the new Communication-Avoiding SGD (CA-SGD) method can achieve speedups of up to 4.97× on a high-performance Infiniband cluster without altering the convergence behavior or accuracy.","PeriodicalId":375004,"journal":{"name":"2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC50609.2020.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic gradient descent (SGD) is one of the most widely used optimization methods for solving various machine learning problems. SGD solves an optimization problem by iteratively sampling a few data points from the input data, computing gradients for the selected data points, and updating the solution. However, in a parallel setting, SGD requires interprocess communication at every iteration. We introduce a new communication-avoiding technique for solving the logistic regression problem using SGD. This technique re-organizes the SGD computations into a form that communicates every $s$ iterations instead of every iteration, where $s$ is a tuning parameter. We prove theoretical flops, bandwidth, and latency upper bounds for SGD and its new communication-avoiding variant. Furthermore, we show experimental results that illustrate that the new Communication-Avoiding SGD (CA-SGD) method can achieve speedups of up to 4.97× on a high-performance Infiniband cluster without altering the convergence behavior or accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逻辑回归中的避免沟通
随机梯度下降(SGD)是解决各种机器学习问题的最广泛使用的优化方法之一。SGD通过从输入数据中迭代地采样一些数据点,计算所选数据点的梯度,并更新解决方案来解决优化问题。然而,在并行设置中,SGD需要在每次迭代中进行进程间通信。我们引入了一种新的通信避免技术来解决使用SGD的逻辑回归问题。该技术将SGD计算重新组织为一种形式,该形式将每次$s$迭代而不是每次迭代进行通信,其中$s$是一个调优参数。我们证明了SGD及其新的通信避免变体的理论失败、带宽和延迟上限。此外,我们展示的实验结果表明,新的通信避免SGD (CA-SGD)方法可以在高性能Infiniband集群上实现高达4.97倍的加速,而不会改变收敛行为或精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HiPC 2020 ORGANIZATION HiPC 2020 Industry Sponsors PufferFish: NUMA-Aware Work-stealing Library using Elastic Tasks Algorithms for Preemptive Co-scheduling of Kernels on GPUs 27th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC 2020) Technical program
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1