A cost model and index architecture for the similarity join

C. Böhm, H. Kriegel
{"title":"A cost model and index architecture for the similarity join","authors":"C. Böhm, H. Kriegel","doi":"10.1109/ICDE.2001.914854","DOIUrl":null,"url":null,"abstract":"The similarity join is an important database primitive which has been successfully applied to speed up data mining algorithms. In the similarity join, two point sets of a multidimensional vector space are combined such that the result contains all point pairs where the distance does not exceed a parameter /spl epsiv/. Due to its high practical relevance, many similarity join algorithms have been devised. The authors propose an analytical cost model for the similarity join operation based on indexes. Our problem analysis reveals a serious optimization conflict between CPU time and I/O time: fine-grained index structures are beneficial for CPU efficiency, but deteriorate the I/O performance. As a consequence of this observation, we propose a new index architecture and join algorithm which allows a separate optimization of CPU time and I/O time. Our solution utilizes large pages which are optimized for I/O processing. The pages accommodate a search structure which minimizes the computational effort in the experimental evaluation, and a substantial improvement over competitive techniques is shown.","PeriodicalId":431818,"journal":{"name":"Proceedings 17th International Conference on Data Engineering","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2001.914854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

The similarity join is an important database primitive which has been successfully applied to speed up data mining algorithms. In the similarity join, two point sets of a multidimensional vector space are combined such that the result contains all point pairs where the distance does not exceed a parameter /spl epsiv/. Due to its high practical relevance, many similarity join algorithms have been devised. The authors propose an analytical cost model for the similarity join operation based on indexes. Our problem analysis reveals a serious optimization conflict between CPU time and I/O time: fine-grained index structures are beneficial for CPU efficiency, but deteriorate the I/O performance. As a consequence of this observation, we propose a new index architecture and join algorithm which allows a separate optimization of CPU time and I/O time. Our solution utilizes large pages which are optimized for I/O processing. The pages accommodate a search structure which minimizes the computational effort in the experimental evaluation, and a substantial improvement over competitive techniques is shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相似性连接的成本模型和索引体系结构
相似连接是一种重要的数据库原语,已成功地应用于提高数据挖掘算法的速度。在相似性连接中,将多维向量空间的两个点集组合在一起,使结果包含距离不超过参数/spl epsiv/的所有点对。由于其高度的实用性,人们设计了许多相似连接算法。提出了一种基于索引的相似性连接操作的分析成本模型。我们的问题分析揭示了CPU时间和I/O时间之间的严重优化冲突:细粒度索引结构有利于CPU效率,但会降低I/O性能。根据这一观察结果,我们提出了一种新的索引架构和连接算法,它允许对CPU时间和I/O时间进行单独的优化。我们的解决方案利用了针对I/O处理进行了优化的大型页面。该页面容纳了一种搜索结构,该结构在实验评估中最大限度地减少了计算工作量,并且比竞争技术有了实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quality-aware and load sensitive planning of image similarity queries Distinctiveness-sensitive nearest-neighbor search for efficient similarity retrieval of multimedia information Data management support of Web applications Prefetching based on the type-level access pattern in object-relational DBMSs Duality-based subsequence matching in time-series databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1