Pedestrian detection using heuristic statistics and machine learning

Chia-Chen Li, Pei-Chen Wu, C. Lin
{"title":"Pedestrian detection using heuristic statistics and machine learning","authors":"Chia-Chen Li, Pei-Chen Wu, C. Lin","doi":"10.1109/ICICS.2013.6782960","DOIUrl":null,"url":null,"abstract":"Pedestrian detection is an important research field in advanced driver assistance system (ADAS). This paper puts forward a pedestrian detection framework based on both heuristic statistics and machine learning. First, a restriction of region of interest (ROI) is set on the captured image. Second, the template matching coarsely detects candidate pedestrians by using a set of template images, the edge image of the current frame, and the difference image from previous and current frames. Next, the histogram analysis again roughly filters out the candidate pedestrians. Finally, Histogram of Oriented Gradients (HOG) combined with library support vector machine (LIBSVM) is used to verify those candidate pedestrians. The experimental results show that the proposed method can run in real-time, where the false negative rate is 1.43%, and the false positive rate is 0.16%.","PeriodicalId":184544,"journal":{"name":"2013 9th International Conference on Information, Communications & Signal Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Information, Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2013.6782960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Pedestrian detection is an important research field in advanced driver assistance system (ADAS). This paper puts forward a pedestrian detection framework based on both heuristic statistics and machine learning. First, a restriction of region of interest (ROI) is set on the captured image. Second, the template matching coarsely detects candidate pedestrians by using a set of template images, the edge image of the current frame, and the difference image from previous and current frames. Next, the histogram analysis again roughly filters out the candidate pedestrians. Finally, Histogram of Oriented Gradients (HOG) combined with library support vector machine (LIBSVM) is used to verify those candidate pedestrians. The experimental results show that the proposed method can run in real-time, where the false negative rate is 1.43%, and the false positive rate is 0.16%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用启发式统计和机器学习的行人检测
行人检测是高级驾驶辅助系统(ADAS)中的一个重要研究领域。提出了一种基于启发式统计和机器学习的行人检测框架。首先,对捕获的图像设置感兴趣区域(ROI)限制。其次,模板匹配利用一组模板图像、当前帧的边缘图像以及与前一帧和当前帧的差值图像对候选行人进行粗检测;接下来,直方图分析再次粗略地过滤出候选行人。最后,结合面向梯度直方图(HOG)和库支持向量机(LIBSVM)对候选行人进行验证。实验结果表明,该方法可以实时运行,假阴性率为1.43%,假阳性率为0.16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cubic-based 3-D localization for wireless sensor networks Using PCA algorithm to refine the results of internet traffic identification Recognizing trees at a distance with discriminative deep feature learning A random increasing sequence hash chain and smart card-based remote user authentication scheme Two dimension nonnegative partial least squares for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1