Knowledge Graph Guided Simultaneous Forecasting and Network Learning for Multivariate Financial Time Series

Shibal Ibrahim, Wenyu Chen, Yada Zhu, Ping Chen, Yang Zhang, R. Mazumder
{"title":"Knowledge Graph Guided Simultaneous Forecasting and Network Learning for Multivariate Financial Time Series","authors":"Shibal Ibrahim, Wenyu Chen, Yada Zhu, Ping Chen, Yang Zhang, R. Mazumder","doi":"10.1145/3533271.3561702","DOIUrl":null,"url":null,"abstract":"Financial time series forecasting is challenging due to limited sample size, correlated samples, low signal strengths, among others. Additional information with knowledge graphs (KGs) can allow for improved prediction and decision making. In this work, we explore a framework GregNets for jointly learning forecasting models and correlations structures that exploit graph connectivity from KGs. We propose novel regularizers based on KG relations to guide estimation of correlation structure. We develop a pseudo-likelihood layer that can learn the error residual structure for any multivariate time-series forecasting architecture in deep learning APIs (e.g. Tensorflow). We evaluate our modeling and algorithmic proposals in small sample regimes in real-world financial markets with two types of KGs. Our empirical results demonstrate sparser connectivity structures, runtime improvements and high-quality predictions.","PeriodicalId":134888,"journal":{"name":"Proceedings of the Third ACM International Conference on AI in Finance","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533271.3561702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Financial time series forecasting is challenging due to limited sample size, correlated samples, low signal strengths, among others. Additional information with knowledge graphs (KGs) can allow for improved prediction and decision making. In this work, we explore a framework GregNets for jointly learning forecasting models and correlations structures that exploit graph connectivity from KGs. We propose novel regularizers based on KG relations to guide estimation of correlation structure. We develop a pseudo-likelihood layer that can learn the error residual structure for any multivariate time-series forecasting architecture in deep learning APIs (e.g. Tensorflow). We evaluate our modeling and algorithmic proposals in small sample regimes in real-world financial markets with two types of KGs. Our empirical results demonstrate sparser connectivity structures, runtime improvements and high-quality predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
知识图谱指导的多元金融时间序列同步预测与网络学习
由于样本量有限、样本相关、信号强度低等原因,金融时间序列预测具有挑战性。知识图(KGs)的附加信息可以改进预测和决策。在这项工作中,我们探索了一个框架GregNets,用于联合学习预测模型和利用KG图连通性的关联结构,我们提出了基于KG关系的新正则器来指导关联结构的估计。我们开发了一个伪似然层,可以学习深度学习api(例如Tensorflow)中任何多元时间序列预测架构的误差残差结构。我们用两种类型的KGs在现实金融市场的小样本制度中评估了我们的建模和算法建议。我们的实证结果显示了更稀疏的连接结构、运行时间的改进和高质量的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Core Matrix Regression and Prediction with Regularization Risk-Aware Linear Bandits with Application in Smart Order Routing Addressing Extreme Market Responses Using Secure Aggregation Addressing Non-Stationarity in FX Trading with Online Model Selection of Offline RL Experts Objective Driven Portfolio Construction Using Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1