Three-dimensional object feature extraction and classification using computational holographic imaging

SPIE ITCom Pub Date : 2003-11-18 DOI:10.1117/12.511205
Sekwon Yeom, B. Javidi
{"title":"Three-dimensional object feature extraction and classification using computational holographic imaging","authors":"Sekwon Yeom, B. Javidi","doi":"10.1117/12.511205","DOIUrl":null,"url":null,"abstract":"This paper deals with 3D object classification using computational holographic imaging. A 3D object can be reconstructed at different planes using a single hologram. We apply Principal Component Analysis (PCA) and Fisher Linear Discriminant (FLD) analysis based on Gabor-wavelet feature vectors to classify 3D objects measured by digital interferometry. Experimental and simulation results are presented for regional filtering concentrated at specific positions, and for overall grid filtering. The proposed technique substantially reduces the dimensionality of the 3D classification problem.","PeriodicalId":282161,"journal":{"name":"SPIE ITCom","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE ITCom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.511205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with 3D object classification using computational holographic imaging. A 3D object can be reconstructed at different planes using a single hologram. We apply Principal Component Analysis (PCA) and Fisher Linear Discriminant (FLD) analysis based on Gabor-wavelet feature vectors to classify 3D objects measured by digital interferometry. Experimental and simulation results are presented for regional filtering concentrated at specific positions, and for overall grid filtering. The proposed technique substantially reduces the dimensionality of the 3D classification problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于计算全息成像的三维目标特征提取与分类
本文研究了基于计算全息成像的三维目标分类。一个三维物体可以用一个全息图在不同的平面上重建。应用基于gabor -小波特征向量的主成分分析(PCA)和Fisher线性判别分析(FLD)对数字干涉测量的三维物体进行分类。给出了集中在特定位置的区域滤波和整体网格滤波的实验和仿真结果。该方法大大降低了三维分类问题的维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optoelectronic devices for optical chaos communications Resonant-cavity-enhanced silicon photodetector integrated to a fiber optic coupler Third-order mode laser diode for twin photon generation InP chip scale integration platform for high performance tunable lasers Electroabsorption modulators integrated with DFB lasers based on identical active double-stack MQW-layer structure with high-frequency performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1