tTEM20AAR: a benchmark geophysical dataset for unconsolidated fluvio-glacial sediments

A. Néven, P. Maurya, A. Christiansen, P. Renard
{"title":"tTEM20AAR: a benchmark geophysical dataset for unconsolidated\nfluvio-glacial sediments","authors":"A. Néven, P. Maurya, A. Christiansen, P. Renard","doi":"10.5194/ESSD-2020-390","DOIUrl":null,"url":null,"abstract":"Abstract. Quaternary deposits are complex and heterogeneous. They contain some of the most abundant and extensively used aquifers. In order to improve the knowledge of the spatial heterogeneity of such deposits, we acquired a large (more than 1400 hectares) and dense (20 m spacing) Time Domain ElectroMagnetic (TDEM) dataset in the upper Aare Valley, Switzerland. TDEM is a fast and reliable method to measure the magnetic field directly related to the resistivity of the underground. In this paper, we present the inverted resistivity models derived from this acquisition, and all the necessary data in order to perform different inversions on the processed data ( https://doi.org/10.5281/ZENODO.4269887 (Neven et al., 2020)). The depth of investigation ranges between 40 to 120 m depth, with an average data residual contained in the standard deviation of the data. These data can be used for many different purposes: from sedimentological interpretation of quaternary environments in alpine environments, geological and hydrogeological modeling, to benchmarking geophysical inversion techniques.","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ESSD-2020-390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Quaternary deposits are complex and heterogeneous. They contain some of the most abundant and extensively used aquifers. In order to improve the knowledge of the spatial heterogeneity of such deposits, we acquired a large (more than 1400 hectares) and dense (20 m spacing) Time Domain ElectroMagnetic (TDEM) dataset in the upper Aare Valley, Switzerland. TDEM is a fast and reliable method to measure the magnetic field directly related to the resistivity of the underground. In this paper, we present the inverted resistivity models derived from this acquisition, and all the necessary data in order to perform different inversions on the processed data ( https://doi.org/10.5281/ZENODO.4269887 (Neven et al., 2020)). The depth of investigation ranges between 40 to 120 m depth, with an average data residual contained in the standard deviation of the data. These data can be used for many different purposes: from sedimentological interpretation of quaternary environments in alpine environments, geological and hydrogeological modeling, to benchmarking geophysical inversion techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
tTEM20AAR:未固结河流-冰川沉积物的基准地球物理数据集
摘要第四纪沉积复杂而非均质。它们含有一些最丰富和最广泛使用的含水层。为了提高对此类矿床空间异质性的认识,我们在瑞士上Aare山谷获得了一个大型(超过1400公顷)和密集(20 m间距)的时域电磁(TDEM)数据集。TDEM是一种快速、可靠的测量与地下电阻率直接相关的磁场的方法。在本文中,我们介绍了从这次采集中获得的反演电阻率模型,以及所有必要的数据,以便对处理后的数据进行不同的反演(https://doi.org/10.5281/ZENODO.4269887 (Neven et al., 2020))。调查深度在40 ~ 120m之间,数据标准差中包含平均数据残差。这些数据可以用于许多不同的目的:从第四纪环境的沉积学解释,地质和水文地质建模,到基准地球物理反演技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New SMOS SSS maps in the framework of the Earth Observation data For Science and Innovation in the Black Sea LGHAP: a Long-term Gap-free High-resolution Air Pollutants concentration dataset derived via tensor flow based multimodal data fusion Pre- and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries Last Interglacial sea-level data points from Northwest Europe A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1