{"title":"Clustering and monitoring edge behaviour in enterprise network traffic","authors":"Christopher Schon, N. Adams, M. Evangelou","doi":"10.1109/ISI.2017.8004870","DOIUrl":null,"url":null,"abstract":"This paper takes an unsupervised learning approach for monitoring edge activity within an enterprise computer network. Using NetFlow records, features are gathered across the active connections (edges) in 15-minute time windows. Then, edges are grouped into clusters using the k-means algorithm. This process is repeated over contiguous windows. A series of informative indicators are derived by examining the relationship of edges with the observed cluster structure. This leads to an intuitive method for monitoring network behaviour and a temporal description of edge behaviour at global and local levels.","PeriodicalId":423696,"journal":{"name":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2017.8004870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper takes an unsupervised learning approach for monitoring edge activity within an enterprise computer network. Using NetFlow records, features are gathered across the active connections (edges) in 15-minute time windows. Then, edges are grouped into clusters using the k-means algorithm. This process is repeated over contiguous windows. A series of informative indicators are derived by examining the relationship of edges with the observed cluster structure. This leads to an intuitive method for monitoring network behaviour and a temporal description of edge behaviour at global and local levels.