Tzvi Diskin, Gordana Drašković, F. Pascal, A. Wiesel
{"title":"Deep robust regression","authors":"Tzvi Diskin, Gordana Drašković, F. Pascal, A. Wiesel","doi":"10.1109/CAMSAP.2017.8313200","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the use of deep neural networks in the context of robust regression. We address the standard linear model with observations that are corrupted by outliers. We build upon Huber's robust regression and the classical least trimmed squares estimator, and propose a deep neural network that generalizes both and provides high accuracy with low computational complexity. The network is trained for arbitrary linear models using a single training phase. Numerical experiments with synthetic data demonstrate that the network can handle on a large range of Signal-to-Noise Ratio (SNR) and is robust to different types of outliers.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we consider the use of deep neural networks in the context of robust regression. We address the standard linear model with observations that are corrupted by outliers. We build upon Huber's robust regression and the classical least trimmed squares estimator, and propose a deep neural network that generalizes both and provides high accuracy with low computational complexity. The network is trained for arbitrary linear models using a single training phase. Numerical experiments with synthetic data demonstrate that the network can handle on a large range of Signal-to-Noise Ratio (SNR) and is robust to different types of outliers.