ANN-based Shear Capacity of Steel Fiber-Reinforced Concrete Beams Without Stirrups

M. Abambres, E. Lantsoght
{"title":"ANN-based Shear Capacity of Steel Fiber-Reinforced Concrete Beams Without Stirrups","authors":"M. Abambres, E. Lantsoght","doi":"10.2139/ssrn.3457585","DOIUrl":null,"url":null,"abstract":"Comparing\nexperimental results on the shear capacity of steel fiber-reinforced concrete\n(SFRC) beams without mild steel stirrups, to the ones predicted by current\ndesign equations and other available formulations, still shows significant\ndifferences. In this paper we propose the use of artificial intelligence to estimate\nthe shear capacity of these members. A database of 430 test results reported in\nthe literature is used to develop an artificial neural network-based formula that\npredicts the shear capacity of SFRC beams without shear reinforcement. The\nproposed model yields maximum and mean relative errors of 0.0% for the 430 data\npoints, which represents a better prediction (mean Vtest / VANN = 1.00 with a coefficient of\nvariation of 1× 10-15) than the existing expressions, where the best\nmodel yields a mean value of Vtest /\nVpred = 1.01 and a coefficient of variation of 27%.","PeriodicalId":356754,"journal":{"name":"EngRN: Structural Engineering (Topic)","volume":"9 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Structural Engineering (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3457585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Comparing experimental results on the shear capacity of steel fiber-reinforced concrete (SFRC) beams without mild steel stirrups, to the ones predicted by current design equations and other available formulations, still shows significant differences. In this paper we propose the use of artificial intelligence to estimate the shear capacity of these members. A database of 430 test results reported in the literature is used to develop an artificial neural network-based formula that predicts the shear capacity of SFRC beams without shear reinforcement. The proposed model yields maximum and mean relative errors of 0.0% for the 430 data points, which represents a better prediction (mean Vtest / VANN = 1.00 with a coefficient of variation of 1× 10-15) than the existing expressions, where the best model yields a mean value of Vtest / Vpred = 1.01 and a coefficient of variation of 27%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的无箍筋钢纤维混凝土梁抗剪承载力研究
不加低碳钢箍筋的钢纤维混凝土(SFRC)梁的抗剪承载力试验结果与现有设计方程和其他可用公式的预测结果相比,仍然存在显著差异。在本文中,我们提出使用人工智能来估计这些成员的抗剪能力。利用文献中报道的430个试验结果的数据库,开发了一个基于人工神经网络的公式,该公式可以预测无抗剪加固的SFRC梁的抗剪能力。该模型对430个数据点的最大相对误差和平均相对误差为0.0%,比现有表达式的预测效果更好(平均Vtest / VANN = 1.00,变异系数为1× 10-15),其中最佳模型的平均值为Vtest /Vpred = 1.01,变异系数为27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Retrofitting Technique of Deficient Foundation by Underpinning by Micropiling: A Critical Review Parameters of Pre-Stressed Box Girder Bridge under Different Radius of Curvature Thermal State of Steel Structures With a Combined Fire Protection System Under Conditions of Fire Exposure Strength Assessment and Restoration of RC Structures by Structural Health Monitoring Techniques The Study of Beam Connection with Diagonal Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1