Using Genetic Algorithms to Repair JUnit Test Cases

Yong Xu, Bo Huang, Guoqing Wu, Mengting Yuan
{"title":"Using Genetic Algorithms to Repair JUnit Test Cases","authors":"Yong Xu, Bo Huang, Guoqing Wu, Mengting Yuan","doi":"10.1109/APSEC.2014.51","DOIUrl":null,"url":null,"abstract":"JUnit test repair has been proposed as a way to alleviate the burden of maintaining the broken tests caused by evolving software. Existing techniques for JUnit test repair either focus on repairing failing assertions or fixing test case compilation errors rendered by evolving method declarations. The empirical work suggests that the synthesis of new method calls is often needed when repairing test cases in practice. In this work, we propose Test Fix, an approach to fix broken JUnit test cases by synthesizing new method calls. Test Fix reduces the synthesis to a search problem and uses a genetic algorithm to solve it. Evaluated on real world applications, preliminary experimental results show that Test Fix can repair broken tests with adding or deleting method calls. Evaluations on the performance of JUnit test repair technique using a genetic algorithm against a random search algorithm are also conducted. Experimental results indicate the clear superiority of genetic algorithms over random search algorithm.","PeriodicalId":380881,"journal":{"name":"2014 21st Asia-Pacific Software Engineering Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21st Asia-Pacific Software Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSEC.2014.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

JUnit test repair has been proposed as a way to alleviate the burden of maintaining the broken tests caused by evolving software. Existing techniques for JUnit test repair either focus on repairing failing assertions or fixing test case compilation errors rendered by evolving method declarations. The empirical work suggests that the synthesis of new method calls is often needed when repairing test cases in practice. In this work, we propose Test Fix, an approach to fix broken JUnit test cases by synthesizing new method calls. Test Fix reduces the synthesis to a search problem and uses a genetic algorithm to solve it. Evaluated on real world applications, preliminary experimental results show that Test Fix can repair broken tests with adding or deleting method calls. Evaluations on the performance of JUnit test repair technique using a genetic algorithm against a random search algorithm are also conducted. Experimental results indicate the clear superiority of genetic algorithms over random search algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用遗传算法修复JUnit测试用例
JUnit测试修复已经被提议作为一种方法来减轻维护由不断发展的软件造成的损坏测试的负担。现有的JUnit测试修复技术要么专注于修复失败的断言,要么专注于修复由不断发展的方法声明呈现的测试用例编译错误。实证研究表明,在实践中修复测试用例时,经常需要合成新的方法调用。在这项工作中,我们提出了测试修复,一种通过合成新的方法调用来修复损坏的JUnit测试用例的方法。Test Fix将合成简化为搜索问题,并使用遗传算法来解决它。在实际应用程序中进行了评估,初步实验结果表明,测试修复可以通过添加或删除方法调用来修复损坏的测试。利用遗传算法和随机搜索算法对JUnit测试修复技术的性能进行了评价。实验结果表明,遗传算法明显优于随机搜索算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
pIML -- An Interrupt Program Modelling Language for Real-Time and Embedded Systems What Community Contribution Pattern Says about Stability of Software Project? Guidelines for the Use of Function Block Diagram in Reactor Protection Systems Data Flow Based Integration Testing for Embedded System Using Interaction Model Model Checking of Software Product Lines in Presence of Nondeterminism and Probabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1