The Utility of Phase Models in Studying Neural Synchronization

Youngmin Park, Stewart Heitmann, G. Ermentrout
{"title":"The Utility of Phase Models in Studying Neural Synchronization","authors":"Youngmin Park, Stewart Heitmann, G. Ermentrout","doi":"10.1002/9781119159193.ch36","DOIUrl":null,"url":null,"abstract":"Synchronized neural spiking is associated with many cognitive functions and thus, merits study for its own sake. The analysis of neural synchronization naturally leads to the study of repetitive spiking and consequently to the analysis of coupled neural oscillators. Coupled oscillator theory thus informs the synchronization of spiking neuronal networks. A crucial aspect of coupled oscillator theory is the phase response curve (PRC), which describes the impact of a perturbation to the phase of an oscillator. In neural terms, the perturbation represents an incoming synaptic potential which may either advance or retard the timing of the next spike. The phase response curves and the form of coupling between reciprocally coupled oscillators defines the phase interaction function, which in turn predicts the synchronization outcome (in-phase versus anti-phase) and the rate of convergence. We review the two classes of PRC and demonstrate the utility of the phase model in predicting synchronization in reciprocally coupled neural models. In addition, we compare the rate of convergence for all combinations of reciprocally coupled Class I and Class II oscillators. These findings predict the general synchronization outcomes of broad classes of neurons under both inhibitory and excitatory reciprocal coupling.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119159193.ch36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Synchronized neural spiking is associated with many cognitive functions and thus, merits study for its own sake. The analysis of neural synchronization naturally leads to the study of repetitive spiking and consequently to the analysis of coupled neural oscillators. Coupled oscillator theory thus informs the synchronization of spiking neuronal networks. A crucial aspect of coupled oscillator theory is the phase response curve (PRC), which describes the impact of a perturbation to the phase of an oscillator. In neural terms, the perturbation represents an incoming synaptic potential which may either advance or retard the timing of the next spike. The phase response curves and the form of coupling between reciprocally coupled oscillators defines the phase interaction function, which in turn predicts the synchronization outcome (in-phase versus anti-phase) and the rate of convergence. We review the two classes of PRC and demonstrate the utility of the phase model in predicting synchronization in reciprocally coupled neural models. In addition, we compare the rate of convergence for all combinations of reciprocally coupled Class I and Class II oscillators. These findings predict the general synchronization outcomes of broad classes of neurons under both inhibitory and excitatory reciprocal coupling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相位模型在神经同步研究中的应用
同步神经尖峰与许多认知功能有关,因此值得研究。对神经同步的分析自然导致对重复尖峰的研究,从而导致对耦合神经振荡器的分析。耦合振荡器理论因此通知同步的尖峰神经元网络。耦合振荡器理论的一个重要方面是相位响应曲线(PRC),它描述了扰动对振荡器相位的影响。在神经学术语中,这种扰动代表了一个传入的突触电位,它可能会提前或推迟下一个峰值的时间。相位响应曲线和互耦振荡器之间的耦合形式定义了相位相互作用函数,这反过来又预测了同步结果(同相与反相)和收敛速度。我们回顾了两类PRC,并展示了相位模型在预测互耦神经模型同步中的效用。此外,我们比较了所有往复耦合的I类和II类振荡器组合的收敛率。这些发现预测了在抑制性和兴奋性互耦下广泛类别神经元的一般同步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-amplitude coupling in neuronal oscillator networks Quality of internal representation shapes learning performance in feedback neural networks Generalisation of neuronal excitability allows for the identification of an excitability change parameter that links to an experimentally measurable value Short term memory by transient oscillatory dynamics in recurrent neural networks Predicting brain evoked response to external stimuli from temporal correlations of spontaneous activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1