Agent-Based Document Expansion for Information Retrieval Based on Topic Modeling of Local Information

Oliver Strauß, Damian Kutzias, H. Kett
{"title":"Agent-Based Document Expansion for Information Retrieval Based on Topic Modeling of Local Information","authors":"Oliver Strauß, Damian Kutzias, H. Kett","doi":"10.1109/ISCMI56532.2022.10068457","DOIUrl":null,"url":null,"abstract":"With the advent of data ecosystems finding information in distributed and federated catalogs and marketplaces becomes more and more important. One of the problems in data search and search in general is the mismatch between the terminology of users and of the searched items, be it dataset metadata or web pages. The paper proposes an agent-based approach to document expansion (ADE). The idea is to represent documents with agents that exploit local information collected from user searches and relevant signals to improve the representation of the document in a search index and subsequently to improve the search performance of the system. The agents collect terms from relevant queries and perform topic modeling on these terms and publish different variants expanded with the topic terms to the search index. We find that the approach achieves good improvement in search performance and is a valuable tool because is places no burden on the information retrieval pipeline and is complementary to other document expansion and information retrieval approaches.","PeriodicalId":340397,"journal":{"name":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI56532.2022.10068457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the advent of data ecosystems finding information in distributed and federated catalogs and marketplaces becomes more and more important. One of the problems in data search and search in general is the mismatch between the terminology of users and of the searched items, be it dataset metadata or web pages. The paper proposes an agent-based approach to document expansion (ADE). The idea is to represent documents with agents that exploit local information collected from user searches and relevant signals to improve the representation of the document in a search index and subsequently to improve the search performance of the system. The agents collect terms from relevant queries and perform topic modeling on these terms and publish different variants expanded with the topic terms to the search index. We find that the approach achieves good improvement in search performance and is a valuable tool because is places no burden on the information retrieval pipeline and is complementary to other document expansion and information retrieval approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部信息主题建模的基于agent的信息检索文档扩展
随着数据生态系统的出现,在分布式和联合目录和市场中查找信息变得越来越重要。数据搜索和一般搜索中的一个问题是用户术语和搜索项之间的不匹配,无论是数据集元数据还是网页。提出了一种基于agent的文档扩展方法。其思想是用代理来表示文档,代理利用从用户搜索中收集的本地信息和相关信号来改进文档在搜索索引中的表示,从而提高系统的搜索性能。代理从相关查询中收集术语,对这些术语执行主题建模,并将随主题术语展开的不同变体发布到搜索索引中。我们发现该方法在搜索性能上取得了很好的提高,并且由于它不增加信息检索管道的负担,并且是其他文档扩展和信息检索方法的补充,是一种有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Gain-Ant Colony Algorithm for Green Vehicle Routing Problem Fake News Detection Using Deep Learning and Natural Language Processing Optimizing Speed and Accuracy Trade-off in Machine Learning Models via Stochastic Gradient Descent Approximation Modeling and Optimization of Two-Chamber Muffler by Genetic Algorithm A Novel Approach for Federated Learning with Non-IID Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1