Prediction of Skin Penetration Using Machine Learning Methods

Yi Sun, G. Moss, Maria Prapopoulou, R. Adams, Marc B. Brown, N. Davey
{"title":"Prediction of Skin Penetration Using Machine Learning Methods","authors":"Yi Sun, G. Moss, Maria Prapopoulou, R. Adams, Marc B. Brown, N. Davey","doi":"10.1109/ICDM.2008.97","DOIUrl":null,"url":null,"abstract":"Improving predictions of the skin permeability coefficient is a difficult problem. It is also an important issue with the increasing use of skin patches as a means of drug delivery. In this work, we apply K-nearest-neighbour regression, single layer networks, mixture of experts and Gaussian processes to predict the permeability coefficient. We obtain a considerable improvement over the quantitative structure-activity relationship (QSARs) predictors. We show that using five features, which are molecular weight, solubility parameter, lipophilicity, the number of hydrogen bonding acceptor and donor groups, can produce better predictions than the one using only lipophilicity and the molecular weight. The Gaussian process regression with five compound features gives the best performance in this work.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Improving predictions of the skin permeability coefficient is a difficult problem. It is also an important issue with the increasing use of skin patches as a means of drug delivery. In this work, we apply K-nearest-neighbour regression, single layer networks, mixture of experts and Gaussian processes to predict the permeability coefficient. We obtain a considerable improvement over the quantitative structure-activity relationship (QSARs) predictors. We show that using five features, which are molecular weight, solubility parameter, lipophilicity, the number of hydrogen bonding acceptor and donor groups, can produce better predictions than the one using only lipophilicity and the molecular weight. The Gaussian process regression with five compound features gives the best performance in this work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习方法预测皮肤穿透
改善皮肤渗透系数的预测是一个难题。随着越来越多地使用皮肤贴片作为给药手段,这也是一个重要的问题。在这项工作中,我们应用k -近邻回归,单层网络,混合专家和高斯过程来预测渗透率系数。我们在定量构效关系(QSARs)预测器上获得了相当大的改进。我们发现,使用分子量、溶解度参数、亲脂性、氢键受体和给体基团的数量这五个特征比只使用亲脂性和分子量的预测结果更好。具有五个复合特征的高斯过程回归在这项工作中表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SeqStream: Mining Closed Sequential Patterns over Stream Sliding Windows Support Vector Regression for Censored Data (SVRc): A Novel Tool for Survival Analysis A Probability Model for Projective Clustering on High Dimensional Data Text Cube: Computing IR Measures for Multidimensional Text Database Analysis A Hierarchical Algorithm for Clustering Uncertain Data via an Information-Theoretic Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1