{"title":"Design and Analysis of Supercontinuum Generating Hybrid Polymer Photonic Crystal Fiber for Medical Imaging","authors":"Shahba Tasmiya Mouna, A. Habib, M. S. Alam","doi":"10.1109/ICTP48844.2019.9041747","DOIUrl":null,"url":null,"abstract":"In this work, a single mode hybrid polymer photonic crystal fiber (PCF) having triangular lattice structure is proposed for possible supercontinuum generation. The hybrid polymer PCF is comprised of thin silica glass layers of few nanometres at the outer surface of the air holes. This air-silica-polymer combination makes the PCF highly nonlinear with extremely high nonlinear parameter and smaller modal effective area. Results show that the supercontinuum generation ranges from 500nm to more than 2166nm, which may be useful in the field of high performance optical coherence tomography (OCT) imaging systems, where a coherent and broadband light source with sufficient brightness and penetration depth is required. The effects of pulse power, pulse duration, length of PCF, etc., on supercontinuum spectra are also analysed and reported here.","PeriodicalId":127575,"journal":{"name":"2019 IEEE International Conference on Telecommunications and Photonics (ICTP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Telecommunications and Photonics (ICTP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTP48844.2019.9041747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a single mode hybrid polymer photonic crystal fiber (PCF) having triangular lattice structure is proposed for possible supercontinuum generation. The hybrid polymer PCF is comprised of thin silica glass layers of few nanometres at the outer surface of the air holes. This air-silica-polymer combination makes the PCF highly nonlinear with extremely high nonlinear parameter and smaller modal effective area. Results show that the supercontinuum generation ranges from 500nm to more than 2166nm, which may be useful in the field of high performance optical coherence tomography (OCT) imaging systems, where a coherent and broadband light source with sufficient brightness and penetration depth is required. The effects of pulse power, pulse duration, length of PCF, etc., on supercontinuum spectra are also analysed and reported here.