Model Fusion: Weighted N-Version Programming for Resilient Autonomous Vehicle Steering Control

Ailec Wu, A. Rubaiyat, Chris Anton, H. Alemzadeh
{"title":"Model Fusion: Weighted N-Version Programming for Resilient Autonomous Vehicle Steering Control","authors":"Ailec Wu, A. Rubaiyat, Chris Anton, H. Alemzadeh","doi":"10.1109/ISSREW.2018.00-11","DOIUrl":null,"url":null,"abstract":"We present the preliminary results on developing a weighted N-version programming (NVP) scheme for ensuring resilience of machine learning based steering control algorithms. The proposed scheme is designed based on the fusion of outputs from three redundant Deep Neural Network (DNN) models, independently designed using Udacity's self driving car challenge data. The improvement in reliability compared to single DNN models is evaluated by measuring the steering angle prediction accuracy in the presence of simulated perturbations on input image data caused by various environmental conditions.","PeriodicalId":321448,"journal":{"name":"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW.2018.00-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present the preliminary results on developing a weighted N-version programming (NVP) scheme for ensuring resilience of machine learning based steering control algorithms. The proposed scheme is designed based on the fusion of outputs from three redundant Deep Neural Network (DNN) models, independently designed using Udacity's self driving car challenge data. The improvement in reliability compared to single DNN models is evaluated by measuring the steering angle prediction accuracy in the presence of simulated perturbations on input image data caused by various environmental conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模型融合:弹性自动驾驶车辆转向控制的加权n -版本规划
我们提出了开发加权n版本编程(NVP)方案的初步结果,以确保基于机器学习的转向控制算法的弹性。该方案基于三个冗余深度神经网络(DNN)模型的输出融合而设计,该模型使用Udacity的自动驾驶汽车挑战数据独立设计。与单一深度神经网络模型相比,可靠性的提高是通过测量在各种环境条件引起的输入图像数据的模拟扰动存在下的转向角预测精度来评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the WoSoCer 2018 Workshop Chairs Software Aging and Rejuvenation in the Cloud: A Literature Review Spectrum-Based Fault Localization for Logic-Based Reasoning [Title page iii] Software Reliability Assessment: Modeling and Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1