Energy Demand and Trading Optimization in Isolated Microgrids

R. Chidzonga, M. Gomba, B. Nleya
{"title":"Energy Demand and Trading Optimization in Isolated Microgrids","authors":"R. Chidzonga, M. Gomba, B. Nleya","doi":"10.1109/ICTAS47918.2020.233994","DOIUrl":null,"url":null,"abstract":"Future generation or smart grid (SG) will incorporate ICT technologies as well as innovative ideas for advanced integrated and automated power systems. The bidirectional information and energy flows within the envisaged advanced SG together with other aiding devices and objects, promote a new vision to energy supply and demand response. Meanwhile, the gradual shift to the next generation fully fledged SGs will be preceded by individual isolated microgrids voluntarily collaborating in the managing of all the available energy resources within their control to achieve optimality in both demand and distribution. In so doing, innovative applications will emerge that will bring numerous benefits as well as challenges in the SG. This paper introduces a power management approach that is geared towards optimizing power distribution, trading, as well as storage among cooperative microgrids (MGs). The initial task is to formulate the problem as a convex optimization problem and ultimately decompose it into a formulation that jointly considers user utility as well as factors such as MG load variance and associated transmission costs. It is deduced from obtained analytical results that the formulated generic optimization algorithm characterizing both overall demand and response by the cooperative microgrids assist greatly in determining the required resources hence leading to cost effectiveness of the entire system.","PeriodicalId":431012,"journal":{"name":"2020 Conference on Information Communications Technology and Society (ICTAS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Conference on Information Communications Technology and Society (ICTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAS47918.2020.233994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Future generation or smart grid (SG) will incorporate ICT technologies as well as innovative ideas for advanced integrated and automated power systems. The bidirectional information and energy flows within the envisaged advanced SG together with other aiding devices and objects, promote a new vision to energy supply and demand response. Meanwhile, the gradual shift to the next generation fully fledged SGs will be preceded by individual isolated microgrids voluntarily collaborating in the managing of all the available energy resources within their control to achieve optimality in both demand and distribution. In so doing, innovative applications will emerge that will bring numerous benefits as well as challenges in the SG. This paper introduces a power management approach that is geared towards optimizing power distribution, trading, as well as storage among cooperative microgrids (MGs). The initial task is to formulate the problem as a convex optimization problem and ultimately decompose it into a formulation that jointly considers user utility as well as factors such as MG load variance and associated transmission costs. It is deduced from obtained analytical results that the formulated generic optimization algorithm characterizing both overall demand and response by the cooperative microgrids assist greatly in determining the required resources hence leading to cost effectiveness of the entire system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
孤立微电网的能源需求与交易优化
下一代或智能电网(SG)将结合ICT技术以及先进的集成和自动化电力系统的创新理念。在设想的先进SG内,信息和能量的双向流动与其他辅助设备和对象一起,促进了能源供需响应的新愿景。与此同时,在逐步向下一代成熟的智能电网过渡之前,单个孤立的微电网将自愿合作管理其控制范围内的所有可用能源,以实现需求和分配的最优化。在这样做的过程中,创新的应用将会出现,这将为SG带来许多好处和挑战。本文介绍了一种面向优化合作微电网(mg)之间的电力分配、交易和存储的电力管理方法。最初的任务是将该问题表述为一个凸优化问题,并最终将其分解为一个共同考虑用户效用以及MG负荷变化和相关传输成本等因素的公式。从得到的分析结果可以推断,所制定的描述合作微电网总体需求和响应的通用优化算法有助于确定所需资源,从而实现整个系统的成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning of a sustainable microgrid system using HOMER software A Formal and Efficient Routing Model for Persistent Traffics in the Internet of Things ICTAS 2020 Ad Page Enhanced Convolutional Neural Networks for Segmentation of Retinal Blood Vessel Image Irenbus: A Real-Time Public Transport Management System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1