Balanced Energy-Efficient Routing in MANETs using Reinforcement Learning

Wibhada Naruephiphat, W. Usaha
{"title":"Balanced Energy-Efficient Routing in MANETs using Reinforcement Learning","authors":"Wibhada Naruephiphat, W. Usaha","doi":"10.1109/ICOIN.2008.4472784","DOIUrl":null,"url":null,"abstract":"This paper proposes an energy-efficient path selection algorithm which aims at balancing the contrasting objectives of maximizing network lifetime and minimizing energy consumption routing in mobile ad hoc networks (MANETs). The method is based on a reinforcement learning technique called the on- policy Monte Carlo (ONMC) method. Simulation results show that variants of the proposed method can outperform existing schemes such as variants of the conditional max-min battery capacity routing (CMMBR) and the best minimum combined- cost routing algorithm in terms of the long-term average reward which depicts the balance of the tradeoff in dynamic topology environments.","PeriodicalId":447966,"journal":{"name":"2008 International Conference on Information Networking","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Information Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN.2008.4472784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper proposes an energy-efficient path selection algorithm which aims at balancing the contrasting objectives of maximizing network lifetime and minimizing energy consumption routing in mobile ad hoc networks (MANETs). The method is based on a reinforcement learning technique called the on- policy Monte Carlo (ONMC) method. Simulation results show that variants of the proposed method can outperform existing schemes such as variants of the conditional max-min battery capacity routing (CMMBR) and the best minimum combined- cost routing algorithm in terms of the long-term average reward which depicts the balance of the tradeoff in dynamic topology environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习的manet均衡节能路由
本文提出了一种高效节能的路径选择算法,旨在平衡移动自组网(manet)中最大化网络生存期和最小化能耗路由的对比目标。该方法基于一种被称为on- policy Monte Carlo (ONMC)方法的强化学习技术。仿真结果表明,该方法在描述动态拓扑环境中权衡平衡的长期平均奖励方面优于条件最大最小电池容量路由(CMMBR)和最佳最小组合成本路由算法等现有方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimum Transmission Range for Underwater Acoustic Sensor Networks A Novel Architecture for securing data delivery in Internet Heuristics to Classify Internet Backbone Traffic based on Connection Patterns Hybrid Routing Scheme based on Geographical Information for Wireless Multihop Internet Access An Integrated Network Management System for Multi-Vendor Power Line Communication Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1