Surface Tracking Along the Interphase Barrier of a Large Transformer: Effect of Moisture within Barrier Board

W. Thansiphraserth, P. Lewin
{"title":"Surface Tracking Along the Interphase Barrier of a Large Transformer: Effect of Moisture within Barrier Board","authors":"W. Thansiphraserth, P. Lewin","doi":"10.1109/EIC.2018.8481120","DOIUrl":null,"url":null,"abstract":"Partial Discharge (PD) measurements are an important tool for assessment of the condition of the insulation systems of power equipment such as high voltage transformers. One of the most dangerous failure modes in a large autotransformer is due to surface discharge along the interphase barrier board. Previous work has shown the measurement of Phase Resolved Partial Discharge, PRPD, patterns of surface tracking using either a local PD source only or for a local PD source in the presence of an additional single phase electric field. More recently, results obtained for a barrier board with 9% moisture content in the presence of a two phase applied field as well as a PD source have been reported. In this paper, experiments are described using two phase applied fields for samples with different moisture content of 3% and 6%. The experimental results and discussion highlight the effect of different moisture content within pressboards under the effect of two phase energization, on surface charge behavior. The results should assist in determining the effect of moisture content on PRPD patterns and will help to improve diagnostics of field data captured in real-time. The experiments have been undertaken at the Tony Davies High Voltage Laboratory, University of Southampton.","PeriodicalId":184139,"journal":{"name":"2018 IEEE Electrical Insulation Conference (EIC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Electrical Insulation Conference (EIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIC.2018.8481120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Partial Discharge (PD) measurements are an important tool for assessment of the condition of the insulation systems of power equipment such as high voltage transformers. One of the most dangerous failure modes in a large autotransformer is due to surface discharge along the interphase barrier board. Previous work has shown the measurement of Phase Resolved Partial Discharge, PRPD, patterns of surface tracking using either a local PD source only or for a local PD source in the presence of an additional single phase electric field. More recently, results obtained for a barrier board with 9% moisture content in the presence of a two phase applied field as well as a PD source have been reported. In this paper, experiments are described using two phase applied fields for samples with different moisture content of 3% and 6%. The experimental results and discussion highlight the effect of different moisture content within pressboards under the effect of two phase energization, on surface charge behavior. The results should assist in determining the effect of moisture content on PRPD patterns and will help to improve diagnostics of field data captured in real-time. The experiments have been undertaken at the Tony Davies High Voltage Laboratory, University of Southampton.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型变压器相间屏障表面跟踪:屏障板内水分的影响
局部放电(PD)测量是评估高压变压器等电力设备绝缘状况的重要手段。大型自耦变压器中最危险的失效模式之一是沿相间阻挡板的表面放电。先前的工作已经展示了仅使用局部局部放电源或在存在额外单相电场的局部局部放电源的情况下测量相分辨局部放电(PRPD)表面跟踪模式。最近,在两相电场和PD源存在的情况下,获得了含有9%水分含量的屏障板的结果。本文对含水率分别为3%和6%的样品进行了两相场的试验。实验结果和讨论强调了在两相通电作用下,压板内部不同含水率对表面电荷行为的影响。结果将有助于确定水分含量对PRPD模式的影响,并将有助于改进实时捕获的现场数据的诊断。这些实验是在南安普顿大学的托尼戴维斯高压实验室进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Research on Flashover Characteristics of Insulator with N2 Dissolved Gas Analysis (DGA) of Arc Discharge Fault in Transformer Insulation Oils (Ester and Mineral Oils) Nonparametric Kernel Density Estimation Model of Transformer Health Based on Dissolved Gases in Oil Experimental validation of a moisture sensor for cellulosic insulation of power transformers Development Process of Vibration Sparking Erosion on Stator Bars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1