{"title":"Reversibility and partial reactions of the Na(+)-K+ pump of rat erythrocytes.","authors":"J Duhm, J Zicha","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>An assay was developed to characterize the kinetic parameters of the Na(+)-K+ pump of rat erythrocytes under conditions as physiological as possible. Changes in the red cell Na+ and Rb+ content were determined in Na+ media (containing 2.5 mM inorganic phosphate (PO4) as a function of cell Na+ (2-8 mmol/l) and extracellular Rb+ (0.2-5 mM). Evaluation of the data revealed that under these conditions the Na(+)-K+ pump mediates, in addition to forward running 3 Nai+: 2 Rbo+ exchange, 1 Ki+:Rbo+ exchange and pump reversal (3 Nao+:2 Ki+ exchange). The two latter modes of Na(+)-K+ pump operation are accelerated by PO4 and lowering of cell Na+. At physiological cation and PO4 concentrations, 1Ki+:Rbo+ exchange contributes by 30-60% to total ouabain-sensitive Rb+ uptake. Thereby, the stoichiometry of ouabain-sensitive Na+ net-extrusion to Rb+ uptake is reduced to values between 1.0 and 0.5. Only at cell Na+ contents above 20 mmol/l the Na+:Rb+ stoichiometry approaches the value of 3:2 = 1.5. At certain constellations of Nai+ and Rbo+ the Na(+)-K+ pump cannot perform any net-transport of Na+ and K+ (Rb+). These equilibrium points are not far from those expected from thermodynamic considerations. The results demonstrate that in normal rat erythrocytes the reversible reaction cycle of the Na(+)-K+ pump runs in several modes of operation. The \"abnormal\" modes complicate the interpretation of unidirectional fluxes mediated by the Na(+)-K+ pump.</p>","PeriodicalId":20547,"journal":{"name":"Physiologia Bohemoslovaca","volume":"39 1","pages":"3-14"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia Bohemoslovaca","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An assay was developed to characterize the kinetic parameters of the Na(+)-K+ pump of rat erythrocytes under conditions as physiological as possible. Changes in the red cell Na+ and Rb+ content were determined in Na+ media (containing 2.5 mM inorganic phosphate (PO4) as a function of cell Na+ (2-8 mmol/l) and extracellular Rb+ (0.2-5 mM). Evaluation of the data revealed that under these conditions the Na(+)-K+ pump mediates, in addition to forward running 3 Nai+: 2 Rbo+ exchange, 1 Ki+:Rbo+ exchange and pump reversal (3 Nao+:2 Ki+ exchange). The two latter modes of Na(+)-K+ pump operation are accelerated by PO4 and lowering of cell Na+. At physiological cation and PO4 concentrations, 1Ki+:Rbo+ exchange contributes by 30-60% to total ouabain-sensitive Rb+ uptake. Thereby, the stoichiometry of ouabain-sensitive Na+ net-extrusion to Rb+ uptake is reduced to values between 1.0 and 0.5. Only at cell Na+ contents above 20 mmol/l the Na+:Rb+ stoichiometry approaches the value of 3:2 = 1.5. At certain constellations of Nai+ and Rbo+ the Na(+)-K+ pump cannot perform any net-transport of Na+ and K+ (Rb+). These equilibrium points are not far from those expected from thermodynamic considerations. The results demonstrate that in normal rat erythrocytes the reversible reaction cycle of the Na(+)-K+ pump runs in several modes of operation. The "abnormal" modes complicate the interpretation of unidirectional fluxes mediated by the Na(+)-K+ pump.