System approximations based on Meixner-like models

Safa Maraoui, A. Krifa, Kais Bouzrara
{"title":"System approximations based on Meixner-like models","authors":"Safa Maraoui, A. Krifa, Kais Bouzrara","doi":"10.1049/iet-spr.2015.0091","DOIUrl":null,"url":null,"abstract":"In this study, the authors investigate the parametric complexity reduction of the Meixner-like model for linear discrete-time system representation. The use of the Meixner-like functions is more suitable than the use of Laguerre functions and Kautz functions especially when the system have a slow initial onset or delay. The coefficients of the Meixner-like model can be estimated recursively from input–output data by the new representation. Noting that the selection of an arbitrary pole for the Meixner-like functions can raise the parameter number of the Meixner-like model. However, when the pole is set to its optimal value, an optimal expansion of transfer functions is produced. Therefore an optimisation technique is developed to generate the optimal Meixner-like pole, which is achieved by an iterative method, that consists in minimising the mean square error between the system output and the model output. Theoretical analysis and a numerical simulation show the efficiency of the approach.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2015.0091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this study, the authors investigate the parametric complexity reduction of the Meixner-like model for linear discrete-time system representation. The use of the Meixner-like functions is more suitable than the use of Laguerre functions and Kautz functions especially when the system have a slow initial onset or delay. The coefficients of the Meixner-like model can be estimated recursively from input–output data by the new representation. Noting that the selection of an arbitrary pole for the Meixner-like functions can raise the parameter number of the Meixner-like model. However, when the pole is set to its optimal value, an optimal expansion of transfer functions is produced. Therefore an optimisation technique is developed to generate the optimal Meixner-like pole, which is achieved by an iterative method, that consists in minimising the mean square error between the system output and the model output. Theoretical analysis and a numerical simulation show the efficiency of the approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于类迈克斯纳模型的系统近似
在本研究中,作者研究了线性离散系统表示的类meixner模型的参数复杂度降低问题。特别是当系统初发缓慢或延迟时,使用类迈克斯纳函数比使用拉盖尔函数和考茨函数更合适。通过新的表示,可以从输入输出数据递归地估计类meixner模型的系数。注意到为类meixner函数选择任意极点可以提高类meixner模型的参数数。然而,当极点被设为最优值时,传递函数的最优展开式就产生了。因此,开发了一种优化技术来生成最优的类迈克斯纳极点,这是通过迭代方法实现的,该方法包括最小化系统输出和模型输出之间的均方误差。理论分析和数值仿真表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An order insensitive optimal generalised sequential fusion estimation for stochastic uncertain multi-sensor systems with correlated noise Spatial Multiplexing in Near Field MIMO Channels with Reconfigurable Intelligent Surfaces An improved segmentation technique for multilevel thresholding of crop image using cuckoo search algorithm based on recursive minimum cross entropy Advances in image processing using machine learning techniques An unsupervised monocular image depth prediction algorithm using Fourier domain analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1