Diversity-based adaptive genetic algorithm for a Workforce Scheduling and Routing Problem

H. Algethami, Dario Landa Silva
{"title":"Diversity-based adaptive genetic algorithm for a Workforce Scheduling and Routing Problem","authors":"H. Algethami, Dario Landa Silva","doi":"10.1109/CEC.2017.7969516","DOIUrl":null,"url":null,"abstract":"The Workforce Scheduling and Routing Problem refers to the assignment of personnel to visits across various geographical locations. Solving this problem demands tackling numerous scheduling and routing constraints while aiming to minimise total operational cost. One of the main obstacles in designing a genetic algorithm for this highly-constrained combinatorial optimisation problem is the amount of empirical tests required for parameter tuning. This paper presents a genetic algorithm that uses a diversity-based adaptive parameter control method. Experimental results show the effectiveness of this parameter control method to enhance the performance of the genetic algorithm. This study makes a contribution to research on adaptive evolutionary algorithms applied to real-world problems.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The Workforce Scheduling and Routing Problem refers to the assignment of personnel to visits across various geographical locations. Solving this problem demands tackling numerous scheduling and routing constraints while aiming to minimise total operational cost. One of the main obstacles in designing a genetic algorithm for this highly-constrained combinatorial optimisation problem is the amount of empirical tests required for parameter tuning. This paper presents a genetic algorithm that uses a diversity-based adaptive parameter control method. Experimental results show the effectiveness of this parameter control method to enhance the performance of the genetic algorithm. This study makes a contribution to research on adaptive evolutionary algorithms applied to real-world problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多样性的自适应遗传算法求解劳动力调度和路由问题
劳动力调度和路线问题指的是人员在不同地理位置的访问分配。要解决这个问题,需要解决大量的调度和路由限制,同时以最小化总运营成本为目标。为这种高度受限的组合优化问题设计遗传算法的主要障碍之一是参数调整所需的经验测试的数量。提出了一种采用基于分集的自适应参数控制方法的遗传算法。实验结果表明,该参数控制方法有效地提高了遗传算法的性能。本研究为自适应进化算法应用于现实问题的研究做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge-based particle swarm optimization for PID controller tuning Local Optima Networks of the Permutation Flowshop Scheduling Problem: Makespan vs. total flow time Information core optimization using Evolutionary Algorithm with Elite Population in recommender systems New heuristics for multi-objective worst-case optimization in evidence-based robust design Bus Routing for emergency evacuations: The case of the Great Fire of Valparaiso
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1