Evaluating keypoint methods for content-based copyright protection of digital images

Larry Huston, R. Sukthankar, Yan Ke
{"title":"Evaluating keypoint methods for content-based copyright protection of digital images","authors":"Larry Huston, R. Sukthankar, Yan Ke","doi":"10.1109/ICME.2005.1521614","DOIUrl":null,"url":null,"abstract":"This paper evaluates the effectiveness of keypoint methods for content-based protection of digital images. These methods identify a set of \"distinctive\" regions (termed keypoints) in an image and encode them using descriptors that are robust to expected image transformations. To determine whether particular images were derived from a protected image, the keypoints for both images are generated and their descriptors matched. We describe a comprehensive set of experiments to examine how keypoint methods cope with three real-world challenges: (1) loss of keypoints due to cropping; (2) matching failures caused by approximate nearest-neighbor indexing schemes; (3) degraded descriptors due to significant image distortions. While keypoint methods perform very well in general, this paper identifies cases where the accuracy of such methods degrades.","PeriodicalId":244360,"journal":{"name":"2005 IEEE International Conference on Multimedia and Expo","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2005.1521614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper evaluates the effectiveness of keypoint methods for content-based protection of digital images. These methods identify a set of "distinctive" regions (termed keypoints) in an image and encode them using descriptors that are robust to expected image transformations. To determine whether particular images were derived from a protected image, the keypoints for both images are generated and their descriptors matched. We describe a comprehensive set of experiments to examine how keypoint methods cope with three real-world challenges: (1) loss of keypoints due to cropping; (2) matching failures caused by approximate nearest-neighbor indexing schemes; (3) degraded descriptors due to significant image distortions. While keypoint methods perform very well in general, this paper identifies cases where the accuracy of such methods degrades.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于内容的数字图像版权保护关键点方法评价
本文评价了基于内容的数字图像保护关键点方法的有效性。这些方法识别图像中的一组“独特”区域(称为关键点),并使用对预期图像转换具有鲁棒性的描述符对其进行编码。为了确定特定图像是否来自受保护的图像,生成两个图像的关键点并匹配它们的描述符。我们描述了一套全面的实验来研究关键点方法如何应对三个现实世界的挑战:(1)由于裁剪导致关键点丢失;(2)近似最近邻索引方案导致的匹配失败;(3)显著的图像失真导致描述符退化。虽然关键点方法通常执行得很好,但本文确定了这种方法的准确性会降低的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lossless image compression with tree coding of magnitude levels Maximizing the profit for cache replacement in a transcoding proxy Pre-Attentional Filtering in Compressed Video Annotation and detection of blended emotions in real human-human dialogs recorded in a call center Fast inter frame encoding based on modes pre-decision in H.264
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1