Hybrid Evolutionary Algorithms for Sensor Placement on a 3D Terrain

H. Topcuoglu, M. Ermis, Mesut Sifyan
{"title":"Hybrid Evolutionary Algorithms for Sensor Placement on a 3D Terrain","authors":"H. Topcuoglu, M. Ermis, Mesut Sifyan","doi":"10.1109/ISDA.2009.127","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a framework for deploying and configuring a set of given sensors in a synthetically generated 3-D terrain with multiple objectives on conflicting attributes: maximizing the visibility of the given terrain, maximizing the stealth of the sensors and minimizing the cost of the sensors used. Because of their utility-independent nature, these complementary and conflicting objectives are represented by a multiplicative total utility function model, based on multi-attribute utility theory. In addition to theoretic foundations, this paper also present a hybrid evolutionary algorithm based technique to solve the sensor placement problem. It includes specialized operators for hybridization, which are problem-specific heuristics for initial population generation, intelligent variation operators which comprise problem specific knowledge, and a local search phase. The experimental study validates finding the optimal balance among the visibility, the stealth and the cost related objectives.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a framework for deploying and configuring a set of given sensors in a synthetically generated 3-D terrain with multiple objectives on conflicting attributes: maximizing the visibility of the given terrain, maximizing the stealth of the sensors and minimizing the cost of the sensors used. Because of their utility-independent nature, these complementary and conflicting objectives are represented by a multiplicative total utility function model, based on multi-attribute utility theory. In addition to theoretic foundations, this paper also present a hybrid evolutionary algorithm based technique to solve the sensor placement problem. It includes specialized operators for hybridization, which are problem-specific heuristics for initial population generation, intelligent variation operators which comprise problem specific knowledge, and a local search phase. The experimental study validates finding the optimal balance among the visibility, the stealth and the cost related objectives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维地形传感器放置的混合进化算法
在本文中,我们提出了一个框架,用于在综合生成的三维地形中部署和配置一组给定传感器,该地形具有冲突属性的多个目标:最大化给定地形的可见性,最大化传感器的隐身性以及最小化所使用传感器的成本。由于它们的效用无关性,这些互补和冲突的目标用基于多属性效用理论的乘法总效用函数模型来表示。除了理论基础外,本文还提出了一种基于混合进化算法的传感器定位方法。它包括用于杂交的专门算子,即用于初始种群生成的特定问题启发式算子,包含特定问题知识的智能变异算子,以及局部搜索阶段。实验研究验证了在可见性、隐身性和成本相关目标之间找到最优平衡点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EACImpute: An Evolutionary Algorithm for Clustering-Based Imputation An FPGA Based Arrhythmia Recognition System for Wearable Applications Knowledge Discovery Approaches for Early Detection of Decompensation Conditions in Heart Failure Patients Evaluating an Intelligent Business System with a Fuzzy Multi-criteria Approach Time Analysis of Forum Evolution as Support Tool for E-Moderating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1