Extracting Clinical Relationships from Patient Narratives

A. Roberts, R. Gaizauskas, Mark Hepple
{"title":"Extracting Clinical Relationships from Patient Narratives","authors":"A. Roberts, R. Gaizauskas, Mark Hepple","doi":"10.3115/1572306.1572309","DOIUrl":null,"url":null,"abstract":"The Clinical E-Science Framework (CLEF) project has built a system to extract clinically significant information from the textual component of medical records, for clinical research, evidence-based healthcare and genotype-meets-phenotype informatics. One part of this system is the identification of relationships between clinically important entities in the text. Typical approaches to relationship extraction in this domain have used full parses, domain-specific grammars, and large knowledge bases encoding domain knowledge. In other areas of biomedical NLP, statistical machine learning approaches are now routinely applied to relationship extraction. We report on the novel application of these statistical techniques to clinical relationships. \n \nWe describe a supervised machine learning system, trained with a corpus of oncology narratives hand-annotated with clinically important relationships. Various shallow features are extracted from these texts, and used to train statistical classifiers. We compare the suitability of these features for clinical relationship extraction, how extraction varies between inter- and intra-sentential relationships, and examine the amount of training data needed to learn various relationships.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1572306.1572309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

Abstract

The Clinical E-Science Framework (CLEF) project has built a system to extract clinically significant information from the textual component of medical records, for clinical research, evidence-based healthcare and genotype-meets-phenotype informatics. One part of this system is the identification of relationships between clinically important entities in the text. Typical approaches to relationship extraction in this domain have used full parses, domain-specific grammars, and large knowledge bases encoding domain knowledge. In other areas of biomedical NLP, statistical machine learning approaches are now routinely applied to relationship extraction. We report on the novel application of these statistical techniques to clinical relationships. We describe a supervised machine learning system, trained with a corpus of oncology narratives hand-annotated with clinically important relationships. Various shallow features are extracted from these texts, and used to train statistical classifiers. We compare the suitability of these features for clinical relationship extraction, how extraction varies between inter- and intra-sentential relationships, and examine the amount of training data needed to learn various relationships.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从病人叙述中提取临床关系
临床电子科学框架(CLEF)项目建立了一个系统,从医疗记录的文本成分中提取临床重要信息,用于临床研究、循证医疗保健和基因型与表型相遇信息学。该系统的一部分是识别文本中临床重要实体之间的关系。该领域中关系抽取的典型方法使用了完整解析、特定于领域的语法和编码领域知识的大型知识库。在生物医学NLP的其他领域,统计机器学习方法现在通常应用于关系提取。我们报告了这些统计技术在临床关系中的新应用。我们描述了一个有监督的机器学习系统,该系统使用临床重要关系手工注释的肿瘤学叙述语料库进行训练。从这些文本中提取各种浅层特征,并用于训练统计分类器。我们比较了这些特征在临床关系提取中的适用性,句子间和句子内关系的提取是如何变化的,并检查了学习各种关系所需的训练数据量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BIOptimus: Pre-training an Optimal Biomedical Language Model with Curriculum Learning for Named Entity Recognition Multi-Source (Pre-)Training for Cross-Domain Measurement, Unit and Context Extraction Building a Corpus for Biomedical Relation Extraction of Species Mentions Good Data, Large Data, or No Data? Comparing Three Approaches in Developing Research Aspect Classifiers for Biomedical Papers Evaluation of ChatGPT on Biomedical Tasks: A Zero-Shot Comparison with Fine-Tuned Generative Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1